Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 12 additions & 16 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -1334,6 +1334,12 @@ def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool =
return None
raise KeyError(f"could not find any of: {keys}")

def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, name, n_dims # unused
if ".patch_embd.weight" in new_name:
return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
return False


@ModelBase.register("GPTNeoXForCausalLM")
class GPTNeoXModel(TextModel):
Expand Down Expand Up @@ -2305,10 +2311,9 @@ def set_gguf_parameters(self):
self.gguf_writer.add_vision_use_gelu(True)

def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
if ".embeddings." in name:
return gguf.GGMLQuantizationType.F32
return False
return super().tensor_force_quant(name, new_name, bid, n_dims)

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
Expand Down Expand Up @@ -3296,12 +3301,9 @@ def set_gguf_parameters(self):
self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))

def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, name, n_dims # unused
if ".patch_embd." in new_name:
return gguf.GGMLQuantizationType.F16
if ".position_embd." in new_name:
return gguf.GGMLQuantizationType.F32
return False
return super().tensor_force_quant(name, new_name, bid, n_dims)

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
Expand Down Expand Up @@ -3374,10 +3376,9 @@ def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
yield ("audio_tower.embed_positions.weight", pos_embd)

def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
if ".conv" in name and ".weight" in name:
return gguf.GGMLQuantizationType.F16
return False
return super().tensor_force_quant(name, new_name, bid, n_dims)

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("thinker."):
Expand Down Expand Up @@ -3423,12 +3424,9 @@ def set_gguf_parameters(self):
self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))

def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, name, n_dims # unused
if ".patch_embd." in new_name:
return gguf.GGMLQuantizationType.F16
if ".position_embd." in new_name:
return gguf.GGMLQuantizationType.F32
return False
return super().tensor_force_quant(name, new_name, bid, n_dims)

def _mapping_interns1_name(self, name):
names_map = {
Expand Down Expand Up @@ -5062,13 +5060,12 @@ def set_gguf_parameters(self):
self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)

def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
# related to https://github.com/ggml-org/llama.cpp/issues/13025
if "input_projection" in name:
return gguf.GGMLQuantizationType.F16
if ".embeddings." in name:
return gguf.GGMLQuantizationType.F32
return False
return super().tensor_force_quant(name, new_name, bid, n_dims)

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
Expand Down Expand Up @@ -7727,10 +7724,9 @@ def set_gguf_parameters(self):
self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))

def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
if ".conv" in name and ".weight" in name:
return gguf.GGMLQuantizationType.F16
return False
return super().tensor_force_quant(name, new_name, bid, n_dims)

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
Expand Down