Skip to content

google-research/timesfm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TimesFM

TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.

This open version is not an officially supported Google product.

Latest Model Version: TimesFM 2.5

Archived Model Versions:

  • 1.0 and 2.0: relevant code archived in the sub directory v1. You can pip install timesfm==1.3.0 to install an older version of this package to load them.

Update - Sept. 15, 2025

TimesFM 2.5 is out!

Comparing to TimesFM 2.0, this new 2.5 model:

  • uses 200M parameters, down from 500M.
  • supports up to 16k context length, up from 2048.
  • supports continuous quantile forecast up to 1k horizon via an optional 30M quantile head.
  • gets rid of the frequency indicator.
  • has a couple of new forecasting flags.

Along with the model upgrade we have also upgraded the inference API. This repo will be under construction over the next few weeks to

  1. add support for an upcoming Flax version of the model (faster inference).
  2. add back covariate support.
  3. populate more docstrings, docs and notebook.

Install

TODO(siriuz42): Package timesfm==2.0.0 and upload to PyPI .

Run

git clone https://github.com/google-research/timesfm.git
cd timesfm
pip install -e .

Code Example

import numpy as np
import timesfm
model = timesfm.TimesFM_2p5_200M_torch()
model.load_checkpoint()
model.compile(
    timesfm.ForecastConfig(
        max_context=1024,
        max_horizon=256,
        normalize_inputs=True,
        use_continuous_quantile_head=True,
        force_flip_invariance=True,
        infer_is_positive=True,
        fix_quantile_crossing=True,
    )
)
point_forecast, quantile_forecast = model.forecast(
    horizon=12,
    inputs=[
        np.linspace(0, 1, 100),
        np.sin(np.linspace(0, 20, 67)),
    ],  # Two dummy inputs
)
point_forecast.shape  # (2, 12)
quantile_forecast.shape  # (2, 12, 10): mean, then 10th to 90th quantiles.

About

TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 18