Skip to content
Merged
Changes from 1 commit
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
c2a14b8
Improve UT Coverage for TF 3x
zehao-intel Jun 6, 2024
40a1e2e
fix depthconv and sepconv
zehao-intel Jun 6, 2024
1cd24d2
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jun 6, 2024
eea3029
set qdq instancenorm as no cover
zehao-intel Jun 6, 2024
d1802b0
Merge branch 'zehao/utc' of https://github.com/intel/neural-compresso…
zehao-intel Jun 6, 2024
09ee46c
fix test keras layers
zehao-intel Jun 6, 2024
1f4996b
fix test keras layers
zehao-intel Jun 6, 2024
42076c7
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jun 6, 2024
42ed3c8
fix test keras layer
zehao-intel Jun 6, 2024
84db7fd
fix tf.py
zehao-intel Jun 6, 2024
85d477a
remove set_tensor ut
zehao-intel Jun 6, 2024
148752f
imporve keras layer and kl algo
zehao-intel Jun 6, 2024
917f192
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jun 6, 2024
f457216
update graph_converter
zehao-intel Jun 7, 2024
1edcc0c
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jun 7, 2024
8744714
Merge branch 'master' into zehao/utc
chensuyue Jun 12, 2024
5e43c59
collect tf new API coverage
chensuyue Jun 12, 2024
0a5003e
add pt omit path
chensuyue Jun 12, 2024
b3257cf
fix the issue
chensuyue Jun 12, 2024
90d4012
use sv param
zehao-intel Jun 13, 2024
c048cd8
run single case for pytest
chensuyue Jun 13, 2024
4a8152d
update test status show case
chensuyue Jun 13, 2024
dd7a4b5
add comments
chensuyue Jun 13, 2024
12f8628
for debug
chensuyue Jun 13, 2024
e38ae03
for test
chensuyue Jun 13, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
fix test keras layers
Signed-off-by: zehao-intel <[email protected]>
  • Loading branch information
zehao-intel committed Jun 6, 2024
commit 09ee46cd39180b560aa7d9c23eb6c9c651206d03
49 changes: 46 additions & 3 deletions test/3x/tensorflow/keras/test_layers.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2024 Intel Corporation
Expand Down Expand Up @@ -30,7 +29,51 @@
logger = Logger().get_logger()


def build_model():
def build_model1():
# Load MNIST dataset
mnist = keras.datasets.mnist

# 60000 images in train and 10000 images in test, but we don't need so much for ut
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images, train_labels = train_images[:1000], train_labels[:1000]
test_images, test_labels = test_images[:200], test_labels[:200]

# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images = test_images / 255.0

# Define the model architecture.
model = keras.Sequential(
[
keras.layers.InputLayer(input_shape=(28, 28)),
keras.layers.Reshape(target_shape=(28, 28, 1)),
keras.layers.DepthwiseConv2D(3, 3, activation='relu', name="conv2d"),
keras.layers.MaxPooling2D(pool_size=(2, 2)),
keras.layers.Flatten(),
keras.layers.Dense(10, name="dense"),
]
)
# Train the digit classification model
model.compile(
optimizer="adam", loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"]
)

model.fit(
train_images,
train_labels,
epochs=1,
validation_split=0.1,
)

_, baseline_model_accuracy = model.evaluate(test_images, test_labels, verbose=0)

print("Baseline test accuracy:", baseline_model_accuracy)
if version1_gte_version2(tf.__version__, "2.16.1"):
model.save("baseline_model1.keras")
else:
model.save("baseline_model1")

def build_model2():
# Load MNIST dataset
mnist = keras.datasets.mnist

Expand Down Expand Up @@ -128,7 +171,7 @@ def tearDownClass(self):
shutil.rmtree(self.fp32_model_path, ignore_errors=True)
os.environ["ITEX_ONEDNN_GRAPH"] = "0"

def test_static_quant_from_dict_default(self):
def test_depthwise_conv2d(self):
logger.info("test_static_quant_from_dict_default")
from neural_compressor.tensorflow import quantize_model
from neural_compressor.tensorflow.keras import get_default_static_quant_config
Expand Down