Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion keras_nlp/models/backbone.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,12 +112,14 @@ def from_preset(
if not load_weights:
return model

filename = os.path.basename(metadata["weights_url"])
weights = keras.utils.get_file(
"model.h5",
filename,
metadata["weights_url"],
cache_subdir=os.path.join("models", preset),
file_hash=metadata["weights_hash"],
)

model.load_weights(weights)
return model

Expand Down
29 changes: 29 additions & 0 deletions keras_nlp/models/t5/t5_backbone_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,3 +53,32 @@ def test_saved_model(self):
init_kwargs=self.init_kwargs,
input_data=self.input_data,
)

@pytest.mark.large
def test_smallest_preset(self):
self.run_preset_test(
cls=T5Backbone,
preset="t5_small_multi",
input_data=self.input_data,
expected_output_shape={
"encoder_sequence_output": (2, 3, 512),
"decoder_sequence_output": (2, 3, 512),
},
expected_partial_output={
"encoder_sequence_output": ops.array(
[-0.0034, 0.0293, -0.0827, -0.1076]
),
"decoder_sequence_output": ops.array(
[0.0097, 0.3576, -0.1508, 0.0150]
),
},
)

@pytest.mark.extra_large
def test_all_presets(self):
for preset in T5Backbone.presets:
self.run_preset_test(
cls=T5Backbone,
preset=preset,
input_data=self.input_data,
)
24 changes: 24 additions & 0 deletions keras_nlp/models/t5/t5_presets.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,10 @@
"layer_norm_epsilon": 1e-06,
},
"preprocessor_config": {},
"weights_url": "https://storage.googleapis.com/keras-nlp/models/t5_small_multi/v1/model.weights.h5",
"weights_hash": "5a241ea61142eaf96ac1805898a2f2d1",
"vocabulary_url": "https://storage.googleapis.com/keras-nlp/models/t5_small_multi/v1/vocab.spm",
"vocabulary_hash": "9d15ef55d09d5a425ceb63fa31f7cae3",
},
"t5_base_multi": {
"metadata": {
Expand All @@ -62,6 +66,10 @@
"layer_norm_epsilon": 1e-06,
},
"preprocessor_config": {},
"weights_url": "https://storage.googleapis.com/keras-nlp/models/t5_base_multi/v1/model.weights.h5",
"weights_hash": "9bef4c6650d91d1ea438ee4a2bea47ad",
"vocabulary_url": "https://storage.googleapis.com/keras-nlp/models/t5_base_multi/v1/vocab.spm",
"vocabulary_hash": "9d15ef55d09d5a425ceb63fa31f7cae3",
},
"t5_large_multi": {
"metadata": {
Expand All @@ -86,6 +94,10 @@
"layer_norm_epsilon": 1e-06,
},
"preprocessor_config": {},
"weights_url": "https://storage.googleapis.com/keras-nlp/models/t5_large_multi/v1/model.weights.h5",
"weights_hash": "eab8eee1bad033e65324a71cd6e5a8e9",
"vocabulary_url": "https://storage.googleapis.com/keras-nlp/models/t5_large_multi/v1/vocab.spm",
"vocabulary_hash": "9d15ef55d09d5a425ceb63fa31f7cae3",
},
"flan_small_multi": {
"metadata": {
Expand All @@ -111,6 +123,10 @@
"layer_norm_epsilon": 1e-06,
},
"preprocessor_config": {},
"weights_url": "https://storage.googleapis.com/keras-nlp/models/flan_small_multi/v1/model.weights.h5",
"weights_hash": "4e39b0bab56606a9ab2b8e52a6bc7a9f",
"vocabulary_url": "https://storage.googleapis.com/keras-nlp/models/flan_small_multi/v1/vocab.spm",
"vocabulary_hash": "9d15ef55d09d5a425ceb63fa31f7cae3",
},
"flan_base_multi": {
"metadata": {
Expand All @@ -135,6 +151,10 @@
"layer_norm_epsilon": 1e-06,
},
"preprocessor_config": {},
"weights_url": "https://storage.googleapis.com/keras-nlp/models/flan_base_multi/v1/model.weights.h5",
"weights_hash": "b529270c5361db36d359a46403532b5c",
"vocabulary_url": "https://storage.googleapis.com/keras-nlp/models/flan_base_multi/v1/vocab.spm",
"vocabulary_hash": "9d15ef55d09d5a425ceb63fa31f7cae3",
},
"flan_large_multi": {
"metadata": {
Expand All @@ -159,5 +179,9 @@
"layer_norm_epsilon": 1e-06,
},
"preprocessor_config": {},
"weights_url": "https://storage.googleapis.com/keras-nlp/models/flan_large_multi/v1/model.weights.h5",
"weights_hash": "50b8d3c88fc10db07e495d79ff29a1b6",
"vocabulary_url": "https://storage.googleapis.com/keras-nlp/models/flan_large_multi/v1/vocab.spm",
"vocabulary_hash": "9d15ef55d09d5a425ceb63fa31f7cae3",
},
}
20 changes: 20 additions & 0 deletions keras_nlp/models/t5/t5_tokenizer_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@

import io

import pytest
import sentencepiece
import tensorflow as tf

Expand Down Expand Up @@ -64,3 +65,22 @@ def test_errors_missing_special_tokens(self):
)
with self.assertRaises(ValueError):
T5Tokenizer(proto=bytes_io.getvalue())

@pytest.mark.large
def test_smallest_preset(self):
for preset in T5Tokenizer.presets:
self.run_preset_test(
cls=T5Tokenizer,
preset=preset,
input_data=["The quick brown fox."],
expected_output=[[1996, 4248, 2829, 4419, 1012]],
)

@pytest.mark.extra_large
def test_all_presets(self):
for preset in T5Tokenizer.presets:
self.run_preset_test(
cls=T5Tokenizer,
preset=preset,
input_data=self.input_data,
)