-
Notifications
You must be signed in to change notification settings - Fork 301
Add Alibi bias layer #1404
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
SamanehSaadat
merged 24 commits into
keras-team:master
from
abuelnasr0:Alibi_bias_layer
Jan 29, 2024
Merged
Add Alibi bias layer #1404
Changes from all commits
Commits
Show all changes
24 commits
Select commit
Hold shift + click to select a range
a76a91b
Add AlibiBias layer
abuelnasr0 3f3d968
Add example
abuelnasr0 f1536df
Convert layer to recieve attn_scores and add the alibi bias to it.
abuelnasr0 9c891ae
Change layer logic
abuelnasr0 3676476
Add layer test
abuelnasr0 358e6f0
Format the code
abuelnasr0 0c949c4
Fix seq_range creation to be int range
abuelnasr0 5f1ebc1
Change bloom model to use alibi bias
abuelnasr0 aa3b15f
Format the code
abuelnasr0 f462ee2
Remove print function
abuelnasr0 726946d
Change logic to only compute alibi bias once
abuelnasr0 56a8c59
Change bloom model API calls to much new alibi layer API
abuelnasr0 7408fd8
Format the code
abuelnasr0 91c0e04
Add dtype kwarg for the layer weight
abuelnasr0 410385f
Revert "Add dtype kwarg for the layer weight"
abuelnasr0 8fc2616
Cast after adding alibi bias
abuelnasr0 8e750b7
Return to compute ALibi bias at each call
abuelnasr0 a44c6e8
Add compute output shape method for bloom decoder
abuelnasr0 7f8cc0f
Force shape to be (batch_size, num_heads, query_length, key_length)
abuelnasr0 9440bd6
Format the code
abuelnasr0 795eacd
Fix documentation
abuelnasr0 071189f
Fix the example
abuelnasr0 f6bf10d
Fix tensorflow2 test fail
abuelnasr0 4f8fcd0
Fix tensorflow2 test fail
abuelnasr0 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
# Copyright 2023 The KerasNLP Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import math | ||
|
||
from keras_nlp.api_export import keras_nlp_export | ||
from keras_nlp.backend import keras | ||
from keras_nlp.backend import ops | ||
|
||
|
||
@keras_nlp_export("keras_nlp.layers.AlibiBias") | ||
class AlibiBias(keras.layers.Layer): | ||
"""A layer that adds the alibi bias to attention scores. | ||
|
||
This layer adds the alibi bias to the attention scores. Alibi bias is a | ||
linear, non-learned bias. Defined and formalized in | ||
[Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation](https://arxiv.org/abs/2108.12409). | ||
|
||
This layer takes as input the attention scores. and returns the attention | ||
scores after adding the alibi bias to it. The output will have the same | ||
shape as the input. | ||
|
||
Args: | ||
alibi_bias_max: int. This value will be used to compute the slope of | ||
each head. The heads' slopes are a geometric sequence that starts at | ||
`2**(-alibi_bias_max/num_heads)` and uses that same value as its | ||
ratio. Defaults to 8. | ||
Call arguments: | ||
attention_scores: The result of multipying the query and the key of the | ||
multi-head attention layer of the transformer to add alibi bias to | ||
it. With shape `(batch_size, num_heads, query_length, key_length)`. | ||
|
||
Examples: | ||
```python | ||
query_length = 10 | ||
key_length = 10 | ||
num_heads = 4 | ||
batch_size = 2 | ||
hidden_dim = 8 | ||
|
||
# Create new alibi layer. | ||
alibi_layer = keras_nlp.layers.AlibiBias() | ||
|
||
query = np.zeros((batch_size, num_heads, query_length, hidden_dim)) | ||
key = np.zeros((batch_size, num_heads, hidden_dim, key_length)) | ||
|
||
attention_scores = keras.ops.matmul(query, key) | ||
|
||
# Add alibi bias to attention scores. | ||
attention_scores = alibi_layer(attention_scores) | ||
``` | ||
|
||
References: | ||
- [Press et al., 2021](https://arxiv.org/abs/2108.12409) | ||
""" | ||
|
||
def __init__( | ||
self, | ||
alibi_bias_max=8, | ||
**kwargs, | ||
): | ||
super().__init__(**kwargs) | ||
self.alibi_bias_max = alibi_bias_max | ||
|
||
def call(self, attention_scores): | ||
shape = ops.shape(attention_scores) | ||
if len(shape) != 4: | ||
raise ValueError( | ||
"Expected `attention_scores` shape to be " | ||
"`(batch_size, num_heads, query_length, key_Length)`." | ||
f" Recived shape={shape}" | ||
) | ||
|
||
key_length = shape[-1] | ||
num_heads = shape[-3] | ||
|
||
alibi_bias = self._get_alibi_bias(num_heads, key_length) | ||
|
||
return ops.add(attention_scores, alibi_bias) | ||
|
||
def _get_alibi_bias(self, num_heads, key_length): | ||
slopes = ops.convert_to_tensor( | ||
self._get_slopes(num_heads), dtype=self.compute_dtype | ||
) | ||
slopes = ops.expand_dims(slopes, 1) | ||
|
||
seq_range = ops.expand_dims(ops.arange(1 - key_length, 1), 0) | ||
seq_range = ops.cast(seq_range, dtype=self.compute_dtype) | ||
|
||
alibi_bias = ops.multiply(slopes, seq_range) | ||
alibi_bias = ops.expand_dims(alibi_bias, 1) | ||
|
||
# return shape is `(1, num_heads, 1, key_length)` | ||
return ops.expand_dims(alibi_bias, 0) | ||
|
||
def _get_slopes(self, num_heads): | ||
# this function is adopted from Alibi original implementation. | ||
# https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 | ||
def get_slopes_power_of_2(n): | ||
start = 2 ** ( | ||
-(2 ** -(math.log2(n) - math.log2(self.alibi_bias_max))) | ||
) | ||
ratio = start | ||
return [start * ratio**i for i in range(n)] | ||
|
||
if math.log2(num_heads).is_integer(): | ||
return get_slopes_power_of_2(num_heads) | ||
else: | ||
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) | ||
return ( | ||
get_slopes_power_of_2(closest_power_of_2) | ||
+ self._get_slopes(2 * closest_power_of_2)[0::2][ | ||
: num_heads - closest_power_of_2 | ||
] | ||
) | ||
|
||
def compute_output_shape(self, input_shape): | ||
return input_shape | ||
|
||
def get_config(self): | ||
config = super().get_config() | ||
config.update( | ||
{ | ||
"alibi_bias_max": self.alibi_bias_max, | ||
} | ||
) | ||
return config |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
# Copyright 2023 The KerasNLP Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from keras_nlp.backend import keras | ||
from keras_nlp.backend import ops | ||
from keras_nlp.backend import random | ||
from keras_nlp.layers.modeling.alibi_bias import AlibiBias | ||
from keras_nlp.tests.test_case import TestCase | ||
|
||
|
||
class AlibiBiasTest(TestCase): | ||
def test_layer_behaviors(self): | ||
alibi_bias_max = 8 | ||
batch_size = 4 | ||
num_heads = 8 | ||
query_length = 10 | ||
key_length = 10 | ||
self.run_layer_test( | ||
cls=AlibiBias, | ||
init_kwargs={ | ||
"alibi_bias_max": alibi_bias_max, | ||
}, | ||
input_data=random.uniform( | ||
shape=(batch_size, num_heads, query_length, key_length) | ||
), | ||
expected_output_shape=( | ||
batch_size, | ||
num_heads, | ||
query_length, | ||
key_length, | ||
), | ||
) | ||
|
||
def test_float16_dtype(self): | ||
# Create a 4-dimensional input (the first dimension is implicit). | ||
alibi_bias_max = 8 | ||
num_heads = 8 | ||
query_length = 5 | ||
key_length = 10 | ||
test_layer = AlibiBias(alibi_bias_max=alibi_bias_max, dtype="float16") | ||
input_tensor = keras.Input(shape=(num_heads, query_length, key_length)) | ||
output_tensor = test_layer(input_tensor) | ||
|
||
# the output is expected to be the same as the input shape in all | ||
# dimensions. here, the first dimension is implicit and is for batch | ||
expected_output_shape = (None, num_heads, query_length, key_length) | ||
self.assertEqual(expected_output_shape, output_tensor.shape) | ||
# The default output dtype for this layer should be "float32". | ||
self.assertEqual("float16", output_tensor.dtype) | ||
|
||
def test_dynamic_layer_output_shape(self): | ||
query_length = 10 | ||
key_length = 10 | ||
num_heads = 4 | ||
|
||
test_layer = AlibiBias() | ||
# Create a 4-dimensional input (the first dimension is implicit). | ||
input_tensor = keras.Input(shape=(num_heads, query_length, key_length)) | ||
output_tensor = test_layer(input_tensor) | ||
|
||
# the output is expected to be the same as the input shape in all | ||
# dimensions. | ||
expected_output_shape = ( | ||
None, | ||
num_heads, | ||
query_length, | ||
key_length, | ||
) | ||
self.assertEqual(expected_output_shape, output_tensor.shape) | ||
|
||
def test_value_error_when_inputs_shape_is_not_4(self): | ||
with self.assertRaises(ValueError): | ||
AlibiBias()(random.uniform(shape=(12, 12))) | ||
|
||
def test_num_heads_is_not_power_of_two(self): | ||
inputs_shape = (1, 12, 12, 12) | ||
inputs = random.uniform(shape=inputs_shape) | ||
layer = AlibiBias() | ||
outputs = layer(inputs) | ||
self.assertEqual(inputs_shape, outputs.shape) | ||
|
||
def test_correct_output(self): | ||
batch_size = 1 | ||
num_heads = 8 | ||
query_length = 1 | ||
key_length = 3 | ||
input_shape = (batch_size, num_heads, query_length, key_length) | ||
input_tensor = ops.zeros(input_shape) | ||
layer = AlibiBias() | ||
output_tensor = layer(input_tensor) | ||
print(output_tensor) | ||
self.assertAllClose( | ||
output_tensor, | ||
ops.convert_to_tensor( | ||
[ | ||
[ | ||
[[-1.0, -0.5, 0.0]], | ||
[[-0.5, -0.25, 0.0]], | ||
[[-0.25, -0.125, 0.0]], | ||
[[-0.125, -0.0625, 0.0]], | ||
[[-0.0625, -0.03125, 0.0]], | ||
[[-0.03125, -0.015625, 0.0]], | ||
[[-0.015625, -0.0078125, 0.0]], | ||
[[-0.0078125, -0.00390625, 0.0]], | ||
] | ||
] | ||
), | ||
) | ||
|
||
def test_correct_output_num_heads_not_power_of_two(self): | ||
batch_size = 1 | ||
num_heads = 14 | ||
query_length = 1 | ||
key_length = 3 | ||
input_shape = (batch_size, num_heads, query_length, key_length) | ||
input_tensor = ops.zeros(input_shape) | ||
layer = AlibiBias() | ||
output_tensor = layer(input_tensor) | ||
print(output_tensor) | ||
self.assertAllClose( | ||
output_tensor, | ||
ops.convert_to_tensor( | ||
[ | ||
[ | ||
[[-1.0, -0.5, 0.0]], | ||
[[-0.5, -0.25, 0.0]], | ||
[[-0.25, -0.125, 0.0]], | ||
[[-0.125, -0.0625, 0.0]], | ||
[[-0.0625, -0.03125, 0.0]], | ||
[[-0.03125, -0.015625, 0.0]], | ||
[[-0.015625, -0.0078125, 0.0]], | ||
[[-0.0078125, -0.00390625, 0.0]], | ||
[[-1.4142135, -0.70710677, 0.0]], | ||
[[-0.70710677, -0.35355338, 0.0]], | ||
[[-0.35355338, -0.17677669, 0.0]], | ||
[[-0.17677669, -0.08838835, 0.0]], | ||
[[-0.08838835, -0.04419417, 0.0]], | ||
[[-0.04419417, -0.02209709, 0.0]], | ||
] | ||
] | ||
), | ||
) | ||
|
||
def test_correct_output_alibi_bias_max(self): | ||
alibi_bias_max = 12 | ||
batch_size = 1 | ||
num_heads = 2 | ||
query_length = 1 | ||
key_length = 3 | ||
input_shape = (batch_size, num_heads, query_length, key_length) | ||
input_tensor = ops.zeros(input_shape) | ||
layer = AlibiBias(alibi_bias_max=alibi_bias_max) | ||
output_tensor = layer(input_tensor) | ||
print(output_tensor) | ||
self.assertAllClose( | ||
output_tensor, | ||
ops.convert_to_tensor( | ||
[ | ||
[ | ||
[[-0.03125, -0.015625, 0.0]], | ||
[[-0.00048828, -0.00024414, 0.0]], | ||
] | ||
] | ||
), | ||
) | ||
|
||
def test_correct_output_alibi_bias_max_num_heads_not_power_of_two( | ||
self, | ||
): | ||
alibi_bias_max = 6 | ||
batch_size = 1 | ||
num_heads = 3 | ||
query_length = 1 | ||
key_length = 3 | ||
input_shape = (batch_size, num_heads, query_length, key_length) | ||
input_tensor = ops.zeros(input_shape) | ||
layer = AlibiBias(alibi_bias_max=alibi_bias_max) | ||
output_tensor = layer(input_tensor) | ||
print(output_tensor) | ||
self.assertAllClose( | ||
output_tensor, | ||
ops.convert_to_tensor( | ||
[ | ||
[ | ||
[[-0.25, -0.125, 0.0]], | ||
[[-0.03125, -0.015625, 0.0]], | ||
[[-0.70710677, -0.35355338, 0.0]], | ||
] | ||
] | ||
), | ||
) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.