Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Feb 6, 2025

⚡️ This pull request contains optimizations for PR #6028

If you approve this dependent PR, these changes will be merged into the original PR branch PlaygroundPage.

This PR will be automatically closed if the original PR is merged.


📄 22% (0.22x) speedup for _serialize_dispatcher in src/backend/base/langflow/serialization/serialization.py

⏱️ Runtime : 1.47 millisecond 1.20 millisecond (best of 93 runs)

📝 Explanation and details

To improve both the runtime performance and memory usage of the provided serialization code, the following optimizations can be applied.

  1. Avoid redundant checks: Remove redundant checks within dispatch functions by organizing and minimizing condition checks.
  2. Optimize dict and list handling: Precompute attributes used multiple times and use more efficient iterations.
  3. Use efficient logging: Replace any runtime debugging logs with appropriate error handling mechanisms.

Here's the optimized code.

Key changes.

  1. Reduced redundant checks in the _serialize_dispatcher.
  2. Simplified string and bytes serialization functions to avoid unnecessary recalculations.
  3. Used more efficient comprehension in _serialize_list_tuple.
  4. Kept detailed logging where necessary but avoided needless logs in production-critical paths.
  5. Removed unnecessary conditions inside _serialize_dispatcher.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 48 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage undefined
🌀 Generated Regression Tests Details
from datetime import datetime
from decimal import Decimal
from typing import Any
from uuid import UUID

import numpy as np
import pandas as pd
# imports
import pytest  # used for our unit tests
from langflow.serialization.serialization import _serialize_dispatcher
from pydantic import BaseModel


# function to test
class _UnserializableSentinel:
    def __repr__(self):
        return "[Unserializable Object]"

UNSERIALIZABLE_SENTINEL = _UnserializableSentinel()
from langflow.serialization.serialization import _serialize_dispatcher

# unit tests

# Test cases for primitive types
def test_serialize_none():
    codeflash_output = _serialize_dispatcher(None, None, None)

def test_serialize_int():
    codeflash_output = _serialize_dispatcher(42, None, None)

def test_serialize_float():
    codeflash_output = _serialize_dispatcher(3.14, None, None)

def test_serialize_bool():
    codeflash_output = _serialize_dispatcher(True, None, None)
    codeflash_output = _serialize_dispatcher(False, None, None)

def test_serialize_complex():
    codeflash_output = _serialize_dispatcher(1 + 2j, None, None)

# Test cases for strings
def test_serialize_str():
    codeflash_output = _serialize_dispatcher("Hello, World!", None, None)
    codeflash_output = _serialize_dispatcher("", None, None)
    long_str = "a" * (MAX_TEXT_LENGTH + 10)
    codeflash_output = _serialize_dispatcher(long_str, MAX_TEXT_LENGTH, None)

# Test cases for bytes
def test_serialize_bytes():
    codeflash_output = _serialize_dispatcher(b"Hello, World!", None, None)
    codeflash_output = _serialize_dispatcher(b"", None, None)
    long_bytes = b"a" * (MAX_TEXT_LENGTH + 10)
    codeflash_output = _serialize_dispatcher(long_bytes, MAX_TEXT_LENGTH, None)

# Test cases for datetime
def test_serialize_datetime():
    dt = datetime(2020, 1, 1, 12, 0, 0)
    codeflash_output = _serialize_dispatcher(dt, None, None)

# Test cases for decimal
def test_serialize_decimal():
    dec = Decimal("3.14")
    codeflash_output = _serialize_dispatcher(dec, None, None)

# Test cases for UUID
def test_serialize_uuid():
    uuid = UUID("12345678123456781234567812345678")
    codeflash_output = _serialize_dispatcher(uuid, None, None)

# Test cases for dictionaries
def test_serialize_dict():
    d = {"key": "value"}
    codeflash_output = _serialize_dispatcher(d, None, None)
    nested_dict = {"key": {"subkey": "subvalue"}}
    codeflash_output = _serialize_dispatcher(nested_dict, None, None)

# Test cases for lists and tuples
def test_serialize_list_tuple():
    lst = [1, 2, 3]
    codeflash_output = _serialize_dispatcher(lst, None, None)
    tpl = (1, 2, 3)
    codeflash_output = _serialize_dispatcher(tpl, None, None)
    nested_list = [[1, 2], [3, 4]]
    codeflash_output = _serialize_dispatcher(nested_list, None, None)

# Test cases for pandas DataFrame
def test_serialize_dataframe():
    df = pd.DataFrame({"A": [1, 2], "B": [3, 4]})
    codeflash_output = _serialize_dispatcher(df, None, None)

# Test cases for pandas Series
def test_serialize_series():
    series = pd.Series([1, 2, 3])
    codeflash_output = _serialize_dispatcher(series, None, None)

# Test cases for numpy types




from collections.abc import AsyncIterator, Generator, Iterator
from datetime import datetime, timezone
from decimal import Decimal
from typing import Any, cast
from uuid import UUID

# function to test
import numpy as np
import pandas as pd
# imports
import pytest  # used for our unit tests
from langchain_core.documents import Document
from langflow.serialization.constants import MAX_ITEMS_LENGTH, MAX_TEXT_LENGTH
from langflow.serialization.serialization import _serialize_dispatcher
from loguru import logger
from pydantic import BaseModel
from pydantic.v1 import BaseModel as BaseModelV1


class _UnserializableSentinel:
    def __repr__(self):
        return "[Unserializable Object]"

UNSERIALIZABLE_SENTINEL = _UnserializableSentinel()
from langflow.serialization.serialization import _serialize_dispatcher

# unit tests

@pytest.mark.parametrize("input_obj,expected_output", [
    (None, None),  # Test None
    (42, 42),  # Test integer
    (3.14, 3.14),  # Test float
    (True, True),  # Test boolean
    (1 + 2j, 1 + 2j),  # Test complex number
    ("Hello, World!", "Hello, World!"),  # Test string
    ("a" * 1000, "a" * 1000),  # Test long string without truncation
    ("a" * 1000, "a" * 50 + "..."),  # Test long string with truncation
    (b"Hello, World!", "Hello, World!"),  # Test bytes
    (datetime(2023, 10, 1, 12, 0, 0), "2023-10-01T12:00:00+00:00"),  # Test datetime
    (Decimal("10.5"), 10.5),  # Test Decimal
    (UUID("12345678123456781234567812345678"), "12345678-1234-5678-1234-567812345678"),  # Test UUID
    ([1, 2, 3], [1, 2, 3]),  # Test list
    ((1, 2, 3), [1, 2, 3]),  # Test tuple
    ({"key": "value"}, {"key": "value"}),  # Test dictionary
    (np.array([1, 2, 3]), [1, 2, 3]),  # Test numpy array
    (np.int32(42), 42),  # Test numpy scalar
])
def test_serialize_dispatcher(input_obj, expected_output):
    codeflash_output = _serialize_dispatcher(input_obj, max_length=50, max_items=10)

# Custom classes for testing
class CustomClass:
    def __str__(self):
        return "CustomClass"

class PydanticModel(BaseModel):
    field: str

class PydanticModelV1(BaseModelV1):
    field: str

# Additional tests for custom classes, Pydantic models, and edge cases
@pytest.mark.parametrize("input_obj,expected_output", [
    (CustomClass(), "CustomClass"),  # Test custom class instance
    (PydanticModel(field="value"), {"field": "value"}),  # Test Pydantic model
    (PydanticModelV1(field="value"), {"field": "value"}),  # Test Pydantic v1 model
    ([], []),  # Test empty list
    ((), []),  # Test empty tuple
    ({}, {}),  # Test empty dictionary
    ([1, "two", 3.0, None], [1, "two", 3.0, None]),  # Test list with mixed types
    ({"key1": 1, "key2": "two", "key3": 3.0}, {"key1": 1, "key2": "two", "key3": 3.0}),  # Test dictionary with mixed types
])
def test_serialize_dispatcher_additional(input_obj, expected_output):
    codeflash_output = _serialize_dispatcher(input_obj, max_length=50, max_items=10)

# Test large scale inputs
def test_serialize_dispatcher_large_scale():
    large_list = list(range(1000))
    expected_output = list(range(10)) + ["... [truncated 990 items]"]
    codeflash_output = _serialize_dispatcher(large_list, max_length=50, max_items=10)

    large_dict = {f"key{i}": i for i in range(1000)}
    expected_output = {f"key{i}": i for i in range(10)}
    codeflash_output = _serialize_dispatcher(large_dict, max_length=50, max_items=10)

    large_df = pd.DataFrame({"col1": range(1000), "col2": range(1000)})
    expected_output = [{"col1": i, "col2": i} for i in range(10)]
    codeflash_output = _serialize_dispatcher(large_df, max_length=50, max_items=10)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

Codeflash

…ygroundPage`)

To improve both the runtime performance and memory usage of the provided serialization code, the following optimizations can be applied.

1. **Avoid redundant checks**: Remove redundant checks within dispatch functions by organizing and minimizing condition checks.
2. **Optimize `dict` and `list` handling**: Precompute attributes used multiple times and use more efficient iterations.
3. **Use efficient logging**: Replace any runtime debugging logs with appropriate error handling mechanisms.

Here's the optimized code.



Key changes.
1. Reduced redundant checks in the `_serialize_dispatcher`.
2. Simplified string and bytes serialization functions to avoid unnecessary recalculations.
3. Used more efficient comprehension in `_serialize_list_tuple`.
4. Kept detailed logging where necessary but avoided needless logs in production-critical paths.
5. Removed unnecessary conditions inside `_serialize_dispatcher`.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Feb 6, 2025
@dosubot dosubot bot added size:L This PR changes 100-499 lines, ignoring generated files. enhancement New feature or request labels Feb 6, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI enhancement New feature or request size:L This PR changes 100-499 lines, ignoring generated files.

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants