Skip to content
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
Show all changes
112 commits
Select commit Hold shift + click to select a range
e6e483c
[SPARK-9679] [ML] [PYSPARK] Add Python API for Stop Words Remover
holdenk Sep 1, 2015
3f63bd6
[SPARK-10398] [DOCS] Migrate Spark download page to use new lua mirro…
srowen Sep 1, 2015
ec01280
[SPARK-4223] [CORE] Support * in acls.
Sep 1, 2015
bf550a4
[SPARK-10162] [SQL] Fix the timezone omitting for PySpark Dataframe f…
0x0FFF Sep 1, 2015
00d9af5
[SPARK-10392] [SQL] Pyspark - Wrong DateType support on JDBC connection
0x0FFF Sep 1, 2015
c3b881a
[SPARK-7336] [HISTORYSERVER] Fix bug that applications status incorre…
ArcherShao Sep 2, 2015
56c4c17
[SPARK-10034] [SQL] add regression test for Sort on Aggregate
cloud-fan Sep 2, 2015
fc48307
[SPARK-10389] [SQL] support order by non-attribute grouping expressio…
cloud-fan Sep 2, 2015
2da3a9e
[SPARK-10004] [SHUFFLE] Perform auth checks when clients read shuffle…
Sep 2, 2015
6cd98c1
[SPARK-10417] [SQL] Iterating through Column results in infinite loop
0x0FFF Sep 2, 2015
03f3e91
[SPARK-10422] [SQL] String column in InMemoryColumnarCache needs to o…
yhuai Sep 3, 2015
44948a2
[SPARK-9723] [ML] params getordefault should throw more useful error
holdenk Sep 3, 2015
4bd85d0
[SPARK-5945] Spark should not retry a stage infinitely on a FetchFail…
Sep 3, 2015
0985d2c
[SPARK-8707] RDD#toDebugString fails if any cached RDD has invalid pa…
navis Sep 3, 2015
f6c447f
Removed code duplication in ShuffleBlockFetcherIterator
eracah Sep 3, 2015
3ddb9b3
[SPARK-10247] [CORE] improve readability of a test case in DAGSchedul…
squito Sep 3, 2015
62b4690
[SPARK-10379] preserve first page in UnsafeShuffleExternalSorter
Sep 3, 2015
0349b5b
[SPARK-10411] [SQL] Move visualization above explain output and hide …
zsxwing Sep 3, 2015
67580f1
[SPARK-10332] [CORE] Fix yarn spark executor validation
holdenk Sep 3, 2015
3abc0d5
[SPARK-9596] [SQL] treat hadoop classes as shared one in IsolatedClie…
WangTaoTheTonic Sep 3, 2015
af0e312
[SPARK-8951] [SPARKR] support Unicode characters in collect()
Sep 3, 2015
49aff7b
[SPARK-10432] spark.port.maxRetries documentation is unclear
Sep 3, 2015
d911c68
[SPARK-10431] [CORE] Fix intermittent test failure. Wait for event qu…
Sep 3, 2015
754f853
[SPARK-9869] [STREAMING] Wait for all event notifications before asse…
Sep 3, 2015
e62f4a4
[SPARK-9672] [MESOS] Don’t include SPARK_ENV_LOADED when passing env …
pashields Sep 3, 2015
11ef32c
[SPARK-10430] [CORE] Added hashCode methods in AccumulableInfo and RD…
Sep 3, 2015
db4c130
[SPARK-9591] [CORE] Job may fail for exception during getting remote …
jeanlyn Sep 3, 2015
08b0750
[SPARK-10435] Spark submit should fail fast for Mesos cluster mode wi…
Sep 3, 2015
208fbca
[SPARK-10421] [BUILD] Exclude curator artifacts from tachyon dependen…
Sep 3, 2015
cf42138
[SPARK-10003] Improve readability of DAGScheduler
Sep 4, 2015
143e521
[MINOR] Minor style fix in SparkR
shivaram Sep 4, 2015
804a012
MAINTENANCE: Automated closing of pull requests.
marmbrus Sep 4, 2015
c3c0e43
[SPARK-10176] [SQL] Show partially analyzed plans when checkAnswer fa…
cloud-fan Sep 4, 2015
3339e6f
[SPARK-10450] [SQL] Minor improvements to readability / style / typos…
Sep 4, 2015
b087d23
[SPARK-9669] [MESOS] Support PySpark on Mesos cluster mode.
tnachen Sep 4, 2015
2e1c175
[SPARK-10454] [SPARK CORE] wait for empty event queue
Sep 4, 2015
eafe372
[SPARK-10311] [STREAMING] Reload appId and attemptId when app starts …
XuTingjun Sep 4, 2015
22eab70
[SPARK-10402] [DOCS] [ML] Add defaults to the scaladoc for params in ml/
holdenk Sep 5, 2015
47058ca
[SPARK-9925] [SQL] [TESTS] Set SQLConf.SHUFFLE_PARTITIONS.key correct…
yhuai Sep 5, 2015
6c75194
[HOTFIX] [SQL] Fixes compilation error
liancheng Sep 5, 2015
7a4f326
[SPARK-10440] [STREAMING] [DOCS] Update python API stuff in the progr…
tdas Sep 5, 2015
bca8c07
[SPARK-10434] [SQL] Fixes Parquet schema of arrays that may contain null
liancheng Sep 5, 2015
871764c
[SPARK-10013] [ML] [JAVA] [TEST] remove java assert from java unit tests
holdenk Sep 5, 2015
5ffe752
[SPARK-9767] Remove ConnectionManager.
rxin Sep 7, 2015
9d8e838
[DOC] Added R to the list of languages with "high-level API" support …
Sep 8, 2015
6ceed85
Docs small fixes
jaceklaskowski Sep 8, 2015
990c9f7
[SPARK-9170] [SQL] Use OrcStructInspector to be case preserving when …
viirya Sep 8, 2015
5b2192e
[SPARK-10480] [ML] Fix ML.LinearRegressionModel.copy()
yanboliang Sep 8, 2015
5fd5795
[SPARK-10316] [SQL] respect nondeterministic expressions in PhysicalO…
cloud-fan Sep 8, 2015
f7b55db
[SPARK-10470] [ML] ml.IsotonicRegressionModel.copy should set parent
yanboliang Sep 8, 2015
7a9dcbc
[SPARK-10441] [SQL] Save data correctly to json.
yhuai Sep 8, 2015
e6f8d36
[SPARK-10468] [ MLLIB ] Verify schema before Dataframe select API call
Sep 8, 2015
52b24a6
[SPARK-10492] [STREAMING] [DOCUMENTATION] Update Streaming documentat…
tdas Sep 8, 2015
d637a66
[SPARK-10327] [SQL] Cache Table is not working while subquery has ali…
chenghao-intel Sep 8, 2015
2143d59
[HOTFIX] Fix build break caused by #8494
marmbrus Sep 8, 2015
ae74c3f
[RELEASE] Add more contributors & only show names in release notes.
rxin Sep 9, 2015
820913f
[SPARK-10071] [STREAMING] Output a warning when writing QueueInputDSt…
zsxwing Sep 9, 2015
52fe32f
[SPARK-9834] [MLLIB] implement weighted least squares via normal equa…
mengxr Sep 9, 2015
a157348
[SPARK-10464] [MLLIB] Add WeibullGenerator for RandomDataGenerator
yanboliang Sep 9, 2015
3a11e50
[SPARK-10373] [PYSPARK] move @since into pyspark from sql
Sep 9, 2015
0e2f216
[SPARK-10094] Pyspark ML Feature transformers marked as experimental
noel-smith Sep 9, 2015
2f6fd52
[SPARK-9654] [ML] [PYSPARK] Add IndexToString to PySpark
holdenk Sep 9, 2015
91a577d
[SPARK-10249] [ML] [DOC] Add Python Code Example to StopWordsRemover …
hhbyyh Sep 9, 2015
c1bc4f4
[SPARK-10227] fatal warnings with sbt on Scala 2.11
Sep 9, 2015
2ddeb63
[SPARK-10117] [MLLIB] Implement SQL data source API for reading LIBSV…
Lewuathe Sep 9, 2015
c0052d8
[SPARK-10481] [YARN] SPARK_PREPEND_CLASSES make spark-yarn related ja…
zjffdu Sep 9, 2015
71da163
[SPARK-10461] [SQL] make sure `input.primitive` is always variable na…
cloud-fan Sep 9, 2015
45de518
[SPARK-9730] [SQL] Add Full Outer Join support for SortMergeJoin
viirya Sep 9, 2015
56a0fe5
[SPARK-9772] [PYSPARK] [ML] Add Python API for ml.feature.VectorSlicer
yanboliang Sep 10, 2015
1dc7548
[MINOR] [MLLIB] [ML] [DOC] fixed typo: label for negative result shou…
sparadiso Sep 10, 2015
48817cc
[SPARK-10497] [BUILD] [TRIVIAL] Handle both locations for JIRAError w…
holdenk Sep 10, 2015
4f1daa1
[SPARK-10065] [SQL] avoid the extra copy when generate unsafe array
cloud-fan Sep 10, 2015
f892d92
[SPARK-7142] [SQL] Minor enhancement to BooleanSimplification Optimiz…
Sep 10, 2015
49da38e
[SPARK-10301] [SPARK-10428] [SQL] Addresses comments of PR #8583 and …
liancheng Sep 10, 2015
e048111
[SPARK-10466] [SQL] UnsafeRow SerDe exception with data spill
chenghao-intel Sep 10, 2015
a76bde9
[SPARK-10469] [DOC] Try and document the three options
holdenk Sep 10, 2015
af3bc59
[SPARK-8167] Make tasks that fail from YARN preemption not fail job
mccheah Sep 10, 2015
f0562e8
[SPARK-6350] [MESOS] Fine-grained mode scheduler respects mesosExecut…
dragos Sep 10, 2015
a5ef2d0
[SPARK-10514] [MESOS] waiting for min no of total cores acquired by S…
SleepyThread Sep 10, 2015
d88abb7
[SPARK-9990] [SQL] Create local hash join operator
zsxwing Sep 10, 2015
45e3be5
[SPARK-10049] [SPARKR] Support collecting data of ArraryType in DataF…
Sep 10, 2015
3db7255
[SPARK-10443] [SQL] Refactor SortMergeOuterJoin to reduce duplication
Sep 10, 2015
4204757
Add 1.5 to master branch EC2 scripts
shivaram Sep 10, 2015
89562a1
[SPARK-7544] [SQL] [PySpark] pyspark.sql.types.Row implements __getit…
yanboliang Sep 10, 2015
0eabea8
[SPARK-9043] Serialize key, value and combiner classes in ShuffleDepe…
massie Sep 11, 2015
339a527
[SPARK-10023] [ML] [PySpark] Unified DecisionTreeParams checkpointInt…
yanboliang Sep 11, 2015
a140dd7
[SPARK-10027] [ML] [PySpark] Add Python API missing methods for ml.fe…
yanboliang Sep 11, 2015
e1d7f64
[SPARK-10472] [SQL] Fixes DataType.typeName for UDT
liancheng Sep 11, 2015
9bbe33f
[SPARK-10556] Remove explicit Scala version for sbt project build files
ahirreddy Sep 11, 2015
c268ca4
[SPARK-10518] [DOCS] Update code examples in spark.ml user guide to u…
y-shimizu Sep 11, 2015
b656e61
[SPARK-10026] [ML] [PySpark] Implement some common Params for regress…
yanboliang Sep 11, 2015
b01b262
[SPARK-9773] [ML] [PySpark] Add Python API for MultilayerPerceptronCl…
yanboliang Sep 11, 2015
960d2d0
[SPARK-10537] [ML] document LIBSVM source options in public API doc a…
mengxr Sep 11, 2015
2e3a280
[MINOR] [MLLIB] [ML] [DOC] Minor doc fixes for StringIndexer and Meta…
jkbradley Sep 11, 2015
6ce0886
[SPARK-10540] [SQL] Ignore HadoopFsRelationTest's "test all data type…
yhuai Sep 11, 2015
5f46444
[SPARK-8530] [ML] add python API for MinMaxScaler
hhbyyh Sep 11, 2015
b231ab8
[SPARK-10546] Check partitionId's range in ExternalSorter#spill()
tedyu Sep 11, 2015
c373866
[PYTHON] Fixed typo in exception message
icaromedeiros Sep 11, 2015
d5d6473
[SPARK-10442] [SQL] fix string to boolean cast
cloud-fan Sep 11, 2015
1eede3b
[SPARK-7142] [SQL] Minor enhancement to BooleanSimplification Optimiz…
Sep 11, 2015
e626ac5
[SPARK-9992] [SPARK-9994] [SPARK-9998] [SQL] Implement the local TopK…
zsxwing Sep 11, 2015
c2af42b
[SPARK-9990] [SQL] Local hash join follow-ups
Sep 11, 2015
d74c6a1
[SPARK-10564] ThreadingSuite: assertion failures in threads don't fai…
Sep 11, 2015
c34fc19
[SPARK-9014] [SQL] Allow Python spark API to use built-in exponential…
0x0FFF Sep 11, 2015
6d83678
[SPARK-10566] [CORE] SnappyCompressionCodec init exception handling m…
dimfeld Sep 12, 2015
8285e3b
[SPARK-10554] [CORE] Fix NPE with ShutdownHook
Sep 12, 2015
22730ad
[SPARK-10547] [TEST] Streamline / improve style of Java API tests
srowen Sep 12, 2015
f4a2280
[SPARK-6548] Adding stddev to DataFrame functions
JihongMA Sep 12, 2015
b3a7480
[SPARK-10330] Add Scalastyle rule to require use of SparkHadoopUtil J…
JoshRosen Sep 12, 2015
1dc614b
[SPARK-10222] [GRAPHX] [DOCS] More thoroughly deprecate Bagel in favo…
srowen Sep 13, 2015
7d94924
Deprecates SQLConf.PARQUET_FOLLOW_PARQUET_FORMAT_SPEC
liancheng Sep 1, 2015
85bbfde
Removes instead of deprecates the old option
liancheng Sep 2, 2015
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
[SPARK-10227] fatal warnings with sbt on Scala 2.11
The bulk of the changes are on `transient` annotation on class parameter. Often the compiler doesn't generate a field for this parameters, so the the transient annotation would be unnecessary.
But if the class parameter are used in methods, then fields are created. So it is safer to keep the annotations.

The remainder are some potential bugs, and deprecated syntax.

Author: Luc Bourlier <[email protected]>

Closes apache#8433 from skyluc/issue/sbt-2.11.
  • Loading branch information
Luc Bourlier authored and srowen committed Sep 9, 2015
commit c1bc4f439f54625c01a585691e5293cd9961eb0c
2 changes: 1 addition & 1 deletion core/src/main/scala/org/apache/spark/Accumulators.scala
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ import org.apache.spark.util.Utils
* @tparam T partial data that can be added in
*/
class Accumulable[R, T] private[spark] (
@transient initialValue: R,
initialValue: R,
param: AccumulableParam[R, T],
val name: Option[String],
internal: Boolean)
Expand Down
2 changes: 1 addition & 1 deletion core/src/main/scala/org/apache/spark/Dependency.scala
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ abstract class NarrowDependency[T](_rdd: RDD[T]) extends Dependency[T] {
*/
@DeveloperApi
class ShuffleDependency[K, V, C](
@transient _rdd: RDD[_ <: Product2[K, V]],
@transient private val _rdd: RDD[_ <: Product2[K, V]],
val partitioner: Partitioner,
val serializer: Option[Serializer] = None,
val keyOrdering: Option[Ordering[K]] = None,
Expand Down
4 changes: 2 additions & 2 deletions core/src/main/scala/org/apache/spark/Partitioner.scala
Original file line number Diff line number Diff line change
Expand Up @@ -104,8 +104,8 @@ class HashPartitioner(partitions: Int) extends Partitioner {
* the value of `partitions`.
*/
class RangePartitioner[K : Ordering : ClassTag, V](
@transient partitions: Int,
@transient rdd: RDD[_ <: Product2[K, V]],
partitions: Int,
rdd: RDD[_ <: Product2[K, V]],
private var ascending: Boolean = true)
extends Partitioner {

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ import org.apache.spark.util.SerializableJobConf
* a filename to write to, etc, exactly like in a Hadoop MapReduce job.
*/
private[spark]
class SparkHadoopWriter(@transient jobConf: JobConf)
class SparkHadoopWriter(jobConf: JobConf)
extends Logging
with SparkHadoopMapRedUtil
with Serializable {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ import org.apache.spark.util.{SerializableConfiguration, Utils}
import scala.util.control.NonFatal

private[spark] class PythonRDD(
@transient parent: RDD[_],
parent: RDD[_],
command: Array[Byte],
envVars: JMap[String, String],
pythonIncludes: JList[String],
Expand Down Expand Up @@ -785,7 +785,7 @@ class BytesToString extends org.apache.spark.api.java.function.Function[Array[By
* Internal class that acts as an `AccumulatorParam` for Python accumulators. Inside, it
* collects a list of pickled strings that we pass to Python through a socket.
*/
private class PythonAccumulatorParam(@transient serverHost: String, serverPort: Int)
private class PythonAccumulatorParam(@transient private val serverHost: String, serverPort: Int)
extends AccumulatorParam[JList[Array[Byte]]] {

Utils.checkHost(serverHost, "Expected hostname")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -131,8 +131,8 @@ private[spark] class StreamInputFormat extends StreamFileInputFormat[PortableDat
*/
@Experimental
class PortableDataStream(
@transient isplit: CombineFileSplit,
@transient context: TaskAttemptContext,
isplit: CombineFileSplit,
context: TaskAttemptContext,
index: Integer)
extends Serializable {

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ class NettyBlockTransferService(conf: SparkConf, securityManager: SecurityManage
new RpcResponseCallback {
override def onSuccess(response: Array[Byte]): Unit = {
logTrace(s"Successfully uploaded block $blockId")
result.success()
result.success((): Unit)
}
override def onFailure(e: Throwable): Unit = {
logError(s"Error while uploading block $blockId", e)
Expand Down
6 changes: 3 additions & 3 deletions core/src/main/scala/org/apache/spark/rdd/BinaryFileRDD.scala
Original file line number Diff line number Diff line change
Expand Up @@ -28,18 +28,18 @@ private[spark] class BinaryFileRDD[T](
inputFormatClass: Class[_ <: StreamFileInputFormat[T]],
keyClass: Class[String],
valueClass: Class[T],
@transient conf: Configuration,
conf: Configuration,
minPartitions: Int)
extends NewHadoopRDD[String, T](sc, inputFormatClass, keyClass, valueClass, conf) {

override def getPartitions: Array[Partition] = {
val inputFormat = inputFormatClass.newInstance
inputFormat match {
case configurable: Configurable =>
configurable.setConf(conf)
configurable.setConf(getConf)
case _ =>
}
val jobContext = newJobContext(conf, jobId)
val jobContext = newJobContext(getConf, jobId)
inputFormat.setMinPartitions(jobContext, minPartitions)
val rawSplits = inputFormat.getSplits(jobContext).toArray
val result = new Array[Partition](rawSplits.size)
Expand Down
4 changes: 2 additions & 2 deletions core/src/main/scala/org/apache/spark/rdd/BlockRDD.scala
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ private[spark] class BlockRDDPartition(val blockId: BlockId, idx: Int) extends P
}

private[spark]
class BlockRDD[T: ClassTag](@transient sc: SparkContext, @transient val blockIds: Array[BlockId])
class BlockRDD[T: ClassTag](sc: SparkContext, @transient val blockIds: Array[BlockId])
extends RDD[T](sc, Nil) {

@transient lazy val _locations = BlockManager.blockIdsToHosts(blockIds, SparkEnv.get)
Expand Down Expand Up @@ -64,7 +64,7 @@ class BlockRDD[T: ClassTag](@transient sc: SparkContext, @transient val blockIds
*/
private[spark] def removeBlocks() {
blockIds.foreach { blockId =>
sc.env.blockManager.master.removeBlock(blockId)
sparkContext.env.blockManager.master.removeBlock(blockId)
}
_isValid = false
}
Expand Down
4 changes: 2 additions & 2 deletions core/src/main/scala/org/apache/spark/rdd/CartesianRDD.scala
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,8 @@ import org.apache.spark.util.Utils
private[spark]
class CartesianPartition(
idx: Int,
@transient rdd1: RDD[_],
@transient rdd2: RDD[_],
@transient private val rdd1: RDD[_],
@transient private val rdd2: RDD[_],
s1Index: Int,
s2Index: Int
) extends Partition {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ private[spark] class CheckpointRDDPartition(val index: Int) extends Partition
/**
* An RDD that recovers checkpointed data from storage.
*/
private[spark] abstract class CheckpointRDD[T: ClassTag](@transient sc: SparkContext)
private[spark] abstract class CheckpointRDD[T: ClassTag](sc: SparkContext)
extends RDD[T](sc, Nil) {

// CheckpointRDD should not be checkpointed again
Expand Down
8 changes: 4 additions & 4 deletions core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ import org.apache.spark.storage.StorageLevel
/**
* A Spark split class that wraps around a Hadoop InputSplit.
*/
private[spark] class HadoopPartition(rddId: Int, idx: Int, @transient s: InputSplit)
private[spark] class HadoopPartition(rddId: Int, idx: Int, s: InputSplit)
extends Partition {

val inputSplit = new SerializableWritable[InputSplit](s)
Expand Down Expand Up @@ -99,7 +99,7 @@ private[spark] class HadoopPartition(rddId: Int, idx: Int, @transient s: InputSp
*/
@DeveloperApi
class HadoopRDD[K, V](
@transient sc: SparkContext,
sc: SparkContext,
broadcastedConf: Broadcast[SerializableConfiguration],
initLocalJobConfFuncOpt: Option[JobConf => Unit],
inputFormatClass: Class[_ <: InputFormat[K, V]],
Expand All @@ -109,7 +109,7 @@ class HadoopRDD[K, V](
extends RDD[(K, V)](sc, Nil) with Logging {

if (initLocalJobConfFuncOpt.isDefined) {
sc.clean(initLocalJobConfFuncOpt.get)
sparkContext.clean(initLocalJobConfFuncOpt.get)
}

def this(
Expand Down Expand Up @@ -137,7 +137,7 @@ class HadoopRDD[K, V](
// used to build JobTracker ID
private val createTime = new Date()

private val shouldCloneJobConf = sc.conf.getBoolean("spark.hadoop.cloneConf", false)
private val shouldCloneJobConf = sparkContext.conf.getBoolean("spark.hadoop.cloneConf", false)

// Returns a JobConf that will be used on slaves to obtain input splits for Hadoop reads.
protected def getJobConf(): JobConf = {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ import org.apache.spark.storage.RDDBlockId
* @param numPartitions the number of partitions in the checkpointed RDD
*/
private[spark] class LocalCheckpointRDD[T: ClassTag](
@transient sc: SparkContext,
sc: SparkContext,
rddId: Int,
numPartitions: Int)
extends CheckpointRDD[T](sc) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ import org.apache.spark.util.Utils
* is written to the local, ephemeral block storage that lives in each executor. This is useful
* for use cases where RDDs build up long lineages that need to be truncated often (e.g. GraphX).
*/
private[spark] class LocalRDDCheckpointData[T: ClassTag](@transient rdd: RDD[T])
private[spark] class LocalRDDCheckpointData[T: ClassTag](@transient private val rdd: RDD[T])
extends RDDCheckpointData[T](rdd) with Logging {

/**
Expand Down
18 changes: 9 additions & 9 deletions core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ import org.apache.spark.storage.StorageLevel
private[spark] class NewHadoopPartition(
rddId: Int,
val index: Int,
@transient rawSplit: InputSplit with Writable)
rawSplit: InputSplit with Writable)
extends Partition {

val serializableHadoopSplit = new SerializableWritable(rawSplit)
Expand Down Expand Up @@ -68,14 +68,14 @@ class NewHadoopRDD[K, V](
inputFormatClass: Class[_ <: InputFormat[K, V]],
keyClass: Class[K],
valueClass: Class[V],
@transient conf: Configuration)
@transient private val _conf: Configuration)
extends RDD[(K, V)](sc, Nil)
with SparkHadoopMapReduceUtil
with Logging {

// A Hadoop Configuration can be about 10 KB, which is pretty big, so broadcast it
private val confBroadcast = sc.broadcast(new SerializableConfiguration(conf))
// private val serializableConf = new SerializableWritable(conf)
private val confBroadcast = sc.broadcast(new SerializableConfiguration(_conf))
// private val serializableConf = new SerializableWritable(_conf)

private val jobTrackerId: String = {
val formatter = new SimpleDateFormat("yyyyMMddHHmm")
Expand All @@ -88,10 +88,10 @@ class NewHadoopRDD[K, V](
val inputFormat = inputFormatClass.newInstance
inputFormat match {
case configurable: Configurable =>
configurable.setConf(conf)
configurable.setConf(_conf)
case _ =>
}
val jobContext = newJobContext(conf, jobId)
val jobContext = newJobContext(_conf, jobId)
val rawSplits = inputFormat.getSplits(jobContext).toArray
val result = new Array[Partition](rawSplits.size)
for (i <- 0 until rawSplits.size) {
Expand Down Expand Up @@ -262,18 +262,18 @@ private[spark] class WholeTextFileRDD(
inputFormatClass: Class[_ <: WholeTextFileInputFormat],
keyClass: Class[String],
valueClass: Class[String],
@transient conf: Configuration,
conf: Configuration,
minPartitions: Int)
extends NewHadoopRDD[String, String](sc, inputFormatClass, keyClass, valueClass, conf) {

override def getPartitions: Array[Partition] = {
val inputFormat = inputFormatClass.newInstance
inputFormat match {
case configurable: Configurable =>
configurable.setConf(conf)
configurable.setConf(getConf)
case _ =>
}
val jobContext = newJobContext(conf, jobId)
val jobContext = newJobContext(getConf, jobId)
inputFormat.setMinPartitions(jobContext, minPartitions)
val rawSplits = inputFormat.getSplits(jobContext).toArray
val result = new Array[Partition](rawSplits.size)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -83,8 +83,8 @@ private[spark] class ParallelCollectionPartition[T: ClassTag](
}

private[spark] class ParallelCollectionRDD[T: ClassTag](
@transient sc: SparkContext,
@transient data: Seq[T],
sc: SparkContext,
@transient private val data: Seq[T],
numSlices: Int,
locationPrefs: Map[Int, Seq[String]])
extends RDD[T](sc, Nil) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ private[spark] class PartitionPruningRDDPartition(idx: Int, val parentSplit: Par
* Represents a dependency between the PartitionPruningRDD and its parent. In this
* case, the child RDD contains a subset of partitions of the parents'.
*/
private[spark] class PruneDependency[T](rdd: RDD[T], @transient partitionFilterFunc: Int => Boolean)
private[spark] class PruneDependency[T](rdd: RDD[T], partitionFilterFunc: Int => Boolean)
extends NarrowDependency[T](rdd) {

@transient
Expand All @@ -55,8 +55,8 @@ private[spark] class PruneDependency[T](rdd: RDD[T], @transient partitionFilterF
*/
@DeveloperApi
class PartitionPruningRDD[T: ClassTag](
@transient prev: RDD[T],
@transient partitionFilterFunc: Int => Boolean)
prev: RDD[T],
partitionFilterFunc: Int => Boolean)
extends RDD[T](prev.context, List(new PruneDependency(prev, partitionFilterFunc))) {

override def compute(split: Partition, context: TaskContext): Iterator[T] = {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -47,8 +47,8 @@ class PartitionwiseSampledRDDPartition(val prev: Partition, val seed: Long)
private[spark] class PartitionwiseSampledRDD[T: ClassTag, U: ClassTag](
prev: RDD[T],
sampler: RandomSampler[T, U],
@transient preservesPartitioning: Boolean,
@transient seed: Long = Utils.random.nextLong)
preservesPartitioning: Boolean,
@transient private val seed: Long = Utils.random.nextLong)
extends RDD[U](prev) {

@transient override val partitioner = if (preservesPartitioning) prev.partitioner else None
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ private[spark] object CheckpointState extends Enumeration {
* as well as, manages the post-checkpoint state by providing the updated partitions,
* iterator and preferred locations of the checkpointed RDD.
*/
private[spark] abstract class RDDCheckpointData[T: ClassTag](@transient rdd: RDD[T])
private[spark] abstract class RDDCheckpointData[T: ClassTag](@transient private val rdd: RDD[T])
extends Serializable {

import CheckpointState._
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ import org.apache.spark.util.{SerializableConfiguration, Utils}
* An RDD that reads from checkpoint files previously written to reliable storage.
*/
private[spark] class ReliableCheckpointRDD[T: ClassTag](
@transient sc: SparkContext,
sc: SparkContext,
val checkpointPath: String)
extends CheckpointRDD[T](sc) {

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ import org.apache.spark.util.SerializableConfiguration
* An implementation of checkpointing that writes the RDD data to reliable storage.
* This allows drivers to be restarted on failure with previously computed state.
*/
private[spark] class ReliableRDDCheckpointData[T: ClassTag](@transient rdd: RDD[T])
private[spark] class ReliableRDDCheckpointData[T: ClassTag](@transient private val rdd: RDD[T])
extends RDDCheckpointData[T](rdd) with Logging {

// The directory to which the associated RDD has been checkpointed to
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ import org.apache.spark.util.{SerializableConfiguration, ShutdownHookManager, Ut
private[spark] class SqlNewHadoopPartition(
rddId: Int,
val index: Int,
@transient rawSplit: InputSplit with Writable)
rawSplit: InputSplit with Writable)
extends SparkPartition {

val serializableHadoopSplit = new SerializableWritable(rawSplit)
Expand All @@ -61,9 +61,9 @@ private[spark] class SqlNewHadoopPartition(
* changes based on [[org.apache.spark.rdd.HadoopRDD]].
*/
private[spark] class SqlNewHadoopRDD[V: ClassTag](
@transient sc : SparkContext,
sc : SparkContext,
broadcastedConf: Broadcast[SerializableConfiguration],
@transient initDriverSideJobFuncOpt: Option[Job => Unit],
@transient private val initDriverSideJobFuncOpt: Option[Job => Unit],
initLocalJobFuncOpt: Option[Job => Unit],
inputFormatClass: Class[_ <: InputFormat[Void, V]],
valueClass: Class[V])
Expand Down
4 changes: 2 additions & 2 deletions core/src/main/scala/org/apache/spark/rdd/UnionRDD.scala
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,9 @@ import org.apache.spark.util.Utils
*/
private[spark] class UnionPartition[T: ClassTag](
idx: Int,
@transient rdd: RDD[T],
@transient private val rdd: RDD[T],
val parentRddIndex: Int,
@transient parentRddPartitionIndex: Int)
@transient private val parentRddPartitionIndex: Int)
extends Partition {

var parentPartition: Partition = rdd.partitions(parentRddPartitionIndex)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ import org.apache.spark.util.Utils

private[spark] class ZippedPartitionsPartition(
idx: Int,
@transient rdds: Seq[RDD[_]],
@transient private val rdds: Seq[RDD[_]],
@transient val preferredLocations: Seq[String])
extends Partition {

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ class ZippedWithIndexRDDPartition(val prev: Partition, val startIndex: Long)
* @tparam T parent RDD item type
*/
private[spark]
class ZippedWithIndexRDD[T: ClassTag](@transient prev: RDD[T]) extends RDD[(T, Long)](prev) {
class ZippedWithIndexRDD[T: ClassTag](prev: RDD[T]) extends RDD[(T, Long)](prev) {

/** The start index of each partition. */
@transient private val startIndices: Array[Long] = {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ import org.apache.spark.{SparkException, Logging, SparkConf}
/**
* A reference for a remote [[RpcEndpoint]]. [[RpcEndpointRef]] is thread-safe.
*/
private[spark] abstract class RpcEndpointRef(@transient conf: SparkConf)
private[spark] abstract class RpcEndpointRef(conf: SparkConf)
extends Serializable with Logging {

private[this] val maxRetries = RpcUtils.numRetries(conf)
Expand Down
Loading