Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
384 changes: 384 additions & 0 deletions fastchat/serve/huggingface_api_worker.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,384 @@
"""
A model worker to call huggingface api.
JSON file format:
{
"falcon-180b-chat": {
"model_path": "tiiuae/falcon-180B-chat",
"api_base": "https://api-inference.huggingface.co/models",
"token": "hf_xxx",
"context_length": 2048
"model_names": "falcon-180b-chat",
"conv_template": null,
}
}

Only "model_path", "api_base", and "token" are necessary, others are optional.
"""
import argparse
import asyncio
import json
import uuid
from typing import List, Optional

import requests
import uvicorn
from fastapi import BackgroundTasks, FastAPI, Request
from fastapi.responses import JSONResponse, StreamingResponse
from huggingface_hub import InferenceClient

from fastchat.constants import SERVER_ERROR_MSG, ErrorCode
from fastchat.serve.model_worker import BaseModelWorker
from fastchat.utils import build_logger

worker_id = str(uuid.uuid4())[:8]
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")

workers = []
worker_map = {}
app = FastAPI()


# reference to
# https://github.com/philschmid/easyllm/blob/cbd908b3b3f44a97a22cb0fc2c93df3660bacdad/easyllm/clients/huggingface.py#L374-L392
def get_gen_kwargs(
params,
seed: Optional[int] = None,
):
stop = params.get("stop", None)
if isinstance(stop, list):
stop_sequences = stop
elif isinstance(stop, str):
stop_sequences = [stop]
else:
stop_sequences = []
gen_kwargs = {
"do_sample": True,
"return_full_text": bool(params.get("echo", False)),
"max_new_tokens": int(params.get("max_new_tokens", 256)),
"top_p": float(params.get("top_p", 1.0)),
"temperature": float(params.get("temperature", 1.0)),
"stop_sequences": stop_sequences,
"repetition_penalty": float(params.get("repetition_penalty", 1.0)),
"top_k": params.get("top_k", None),
"seed": seed,
}
if gen_kwargs["top_p"] == 1:
gen_kwargs["top_p"] = 0.9999999
if gen_kwargs["top_p"] == 0:
gen_kwargs.pop("top_p")
if gen_kwargs["temperature"] == 0:
gen_kwargs.pop("temperature")
gen_kwargs["do_sample"] = False
return gen_kwargs


def could_be_stop(text, stop):
for s in stop:
if any(text.endswith(s[:i]) for i in range(1, len(s) + 1)):
return True
return False


class HuggingfaceApiWorker(BaseModelWorker):
def __init__(
self,
controller_addr: str,
worker_addr: str,
worker_id: str,
model_path: str,
api_base: str,
token: str,
context_length: int,
model_names: List[str],
limit_worker_concurrency: int,
no_register: bool,
conv_template: Optional[str] = None,
seed: Optional[int] = None,
**kwargs,
):
super().__init__(
controller_addr,
worker_addr,
worker_id,
model_path,
model_names,
limit_worker_concurrency,
conv_template=conv_template,
)

self.model_path = model_path
self.api_base = api_base
self.token = token
self.context_len = context_length
self.seed = seed

logger.info(
f"Connecting with huggingface api {self.model_path} as {self.model_names} on worker {worker_id} ..."
)

def count_token(self, params):
# No tokenizer here
ret = {
"count": 0,
"error_code": 0,
}
return ret

def generate_stream_gate(self, params):
self.call_ct += 1

prompt = params["prompt"]
gen_kwargs = get_gen_kwargs(params, seed=self.seed)
stop = gen_kwargs["stop_sequences"]
if "falcon" in self.model_path and "chat" in self.model_path:
stop.extend(["\nUser:", "<|endoftext|>", " User:", "###"])
stop = list(set(stop))
gen_kwargs["stop_sequences"] = stop

logger.info(f"prompt: {prompt}")
logger.info(f"gen_kwargs: {gen_kwargs}")

try:
url = f"{self.api_base}/{self.model_path}"
client = InferenceClient(url, token=self.token)
res = client.text_generation(
prompt, stream=True, details=True, **gen_kwargs
)

reason = None
text = ""
for chunk in res:
if chunk.token.special:
continue
text += chunk.token.text

s = next((x for x in stop if text.endswith(x)), None)
if s is not None:
text = text[: -len(s)]
reason = "stop"
break
if could_be_stop(text, stop):
continue
if (
chunk.details is not None
and chunk.details.finish_reason is not None
):
reason = chunk.details.finish_reason
if reason not in ["stop", "length"]:
reason = None
ret = {
"text": text,
"error_code": 0,
"finish_reason": reason,
}
yield json.dumps(ret).encode() + b"\0"
except Exception as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.INTERNAL_ERROR,
}
yield json.dumps(ret).encode() + b"\0"

def generate_gate(self, params):
for x in self.generate_stream_gate(params):
pass
return json.loads(x[:-1].decode())

def get_embeddings(self, params):
raise NotImplementedError()


def release_worker_semaphore(worker):
worker.semaphore.release()


def acquire_worker_semaphore(worker):
if worker.semaphore is None:
worker.semaphore = asyncio.Semaphore(worker.limit_worker_concurrency)
return worker.semaphore.acquire()


def create_background_tasks(worker):
background_tasks = BackgroundTasks()
background_tasks.add_task(lambda: release_worker_semaphore(worker))
return background_tasks


@app.post("/worker_generate_stream")
async def api_generate_stream(request: Request):
params = await request.json()
worker = worker_map[params["model"]]
await acquire_worker_semaphore(worker)
generator = worker.generate_stream_gate(params)
background_tasks = create_background_tasks(worker)
return StreamingResponse(generator, background=background_tasks)


@app.post("/worker_generate")
async def api_generate(request: Request):
params = await request.json()
worker = worker_map[params["model"]]
await acquire_worker_semaphore(worker)
output = worker.generate_gate(params)
release_worker_semaphore(worker)
return JSONResponse(output)


@app.post("/worker_get_embeddings")
async def api_get_embeddings(request: Request):
params = await request.json()
worker = worker_map[params["model"]]
await acquire_worker_semaphore(worker)
embedding = worker.get_embeddings(params)
release_worker_semaphore(worker)
return JSONResponse(content=embedding)


@app.post("/worker_get_status")
async def api_get_status(request: Request):
return {
"model_names": [m for w in workers for m in w.model_names],
"speed": 1,
"queue_length": sum([w.get_queue_length() for w in workers]),
}


@app.post("/count_token")
async def api_count_token(request: Request):
params = await request.json()
worker = worker_map[params["model"]]
return worker.count_token(params)


@app.post("/worker_get_conv_template")
async def api_get_conv(request: Request):
params = await request.json()
worker = worker_map[params["model"]]
return worker.get_conv_template()


@app.post("/model_details")
async def api_model_details(request: Request):
params = await request.json()
worker = worker_map[params["model"]]
return {"context_length": worker.context_len}


def create_huggingface_api_worker():
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21002)
parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
parser.add_argument(
"--controller-address", type=str, default="http://localhost:21001"
)
# all model-related parameters are listed in --model-info-file
parser.add_argument(
"--model-info-file",
type=str,
required=True,
help="Huggingface API model's info file path",
)

parser.add_argument(
"--limit-worker-concurrency",
type=int,
default=5,
help="Limit the model concurrency to prevent OOM.",
)
parser.add_argument("--no-register", action="store_true")
parser.add_argument(
"--seed",
type=int,
default=None,
help="Overwrite the random seed for each generation.",
)
args = parser.parse_args()

with open(args.model_info_file, "r", encoding="UTF-8") as f:
model_info = json.load(f)

logger.info(f"args: {args}")

model_path_list = []
api_base_list = []
token_list = []
context_length_list = []
model_names_list = []
conv_template_list = []

for m in model_info:
model_path_list.append(model_info[m]["model_path"])
api_base_list.append(model_info[m]["api_base"])
token_list.append(model_info[m]["token"])

context_length = model_info[m].get("context_length", 1024)
model_names = model_info[m].get("model_names", [m.split("/")[-1]])
if isinstance(model_names, str):
model_names = [model_names]
conv_template = model_info[m].get("conv_template", None)

context_length_list.append(context_length)
model_names_list.append(model_names)
conv_template_list.append(conv_template)

logger.info(f"Model paths: {model_path_list}")
logger.info(f"API bases: {api_base_list}")
logger.info(f"Tokens: {token_list}")
logger.info(f"Context lengths: {context_length_list}")
logger.info(f"Model names: {model_names_list}")
logger.info(f"Conv templates: {conv_template_list}")

for (
model_names,
conv_template,
model_path,
api_base,
token,
context_length,
) in zip(
model_names_list,
conv_template_list,
model_path_list,
api_base_list,
token_list,
context_length_list,
):
m = HuggingfaceApiWorker(
args.controller_address,
args.worker_address,
worker_id,
model_path,
api_base,
token,
context_length,
model_names,
args.limit_worker_concurrency,
no_register=args.no_register,
conv_template=conv_template,
seed=args.seed,
)
workers.append(m)
for name in model_names:
worker_map[name] = m

# register all the models
url = args.controller_address + "/register_worker"
data = {
"worker_name": workers[0].worker_addr,
"check_heart_beat": not args.no_register,
"worker_status": {
"model_names": [m for w in workers for m in w.model_names],
"speed": 1,
"queue_length": sum([w.get_queue_length() for w in workers]),
},
}
r = requests.post(url, json=data)
assert r.status_code == 200

return args, workers


if __name__ == "__main__":
args, workers = create_huggingface_api_worker()
uvicorn.run(app, host=args.host, port=args.port, log_level="info")