目标检测支持yolov5、yolov6、yolov7、yolov8,跟踪支持byteTrack等
git clone https://github.com/lturing/yolo_track
cd yolo_track
1. 修改predict_kitti00_v2.py中的model_path、source,其中model_path为预训练模型参数的路径,source为图片路径
2. 根据图片分辨率修改torchyolo/configs/default_config.yaml中的IMAGE_SIZE(图片高度和宽度的最大值)
3. 根据数据的帧率修改
https://github.com/lturing/yolo_track/blob/main/torchyolo/modelhub/yolov5.py#L94
https://github.com/lturing/yolo_track/blob/main/torchyolo/modelhub/yolov7.py#L89
https://github.com/lturing/yolo_track/blob/main/torchyolo/modelhub/yolov8.py#L93
等处的fps,fps将影响保存视频的帧率
# 下载yolo的预训练参数
- [yolov5](https://github.com/ultralytics/yolov5/releases)
- [yolov6](https://github.com/meituan/YOLOv6/releases)
- [yolov7](https://github.com/WongKinYiu/yolov7/releases)
- [yolov8](https://github.com/ultralytics/ultralytics)
# kitti数据下载参考 https://zhuanlan.zhihu.com/p/664386718
运行
python predict_kitti00_v2.py
# 结果会保存在当前目录下的output.mp4