Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Adding nonessential code for MLOpsPython BYOC Azure doc
  • Loading branch information
bjcmit committed Jan 30, 2020
commit 7258ab3b40c63e9bff61c7d87363f6ab303feb55
218 changes: 216 additions & 2 deletions experimentation/Diabetes Ridge Regression Training.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -36,13 +36,227 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"X, y = load_diabetes(return_X_y=True)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(442, 10)\n"
]
}
],
"source": [
"print(X.shape)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(442,)\n"
]
}
],
"source": [
"print(y.shape)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" <th>5</th>\n",
" <th>6</th>\n",
" <th>7</th>\n",
" <th>8</th>\n",
" <th>9</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>count</td>\n",
" <td>4.420000e+02</td>\n",
" <td>4.420000e+02</td>\n",
" <td>4.420000e+02</td>\n",
" <td>4.420000e+02</td>\n",
" <td>4.420000e+02</td>\n",
" <td>4.420000e+02</td>\n",
" <td>4.420000e+02</td>\n",
" <td>4.420000e+02</td>\n",
" <td>4.420000e+02</td>\n",
" <td>4.420000e+02</td>\n",
" </tr>\n",
" <tr>\n",
" <td>mean</td>\n",
" <td>-3.639623e-16</td>\n",
" <td>1.309912e-16</td>\n",
" <td>-8.013951e-16</td>\n",
" <td>1.289818e-16</td>\n",
" <td>-9.042540e-17</td>\n",
" <td>1.301121e-16</td>\n",
" <td>-4.563971e-16</td>\n",
" <td>3.863174e-16</td>\n",
" <td>-3.848103e-16</td>\n",
" <td>-3.398488e-16</td>\n",
" </tr>\n",
" <tr>\n",
" <td>std</td>\n",
" <td>4.761905e-02</td>\n",
" <td>4.761905e-02</td>\n",
" <td>4.761905e-02</td>\n",
" <td>4.761905e-02</td>\n",
" <td>4.761905e-02</td>\n",
" <td>4.761905e-02</td>\n",
" <td>4.761905e-02</td>\n",
" <td>4.761905e-02</td>\n",
" <td>4.761905e-02</td>\n",
" <td>4.761905e-02</td>\n",
" </tr>\n",
" <tr>\n",
" <td>min</td>\n",
" <td>-1.072256e-01</td>\n",
" <td>-4.464164e-02</td>\n",
" <td>-9.027530e-02</td>\n",
" <td>-1.123996e-01</td>\n",
" <td>-1.267807e-01</td>\n",
" <td>-1.156131e-01</td>\n",
" <td>-1.023071e-01</td>\n",
" <td>-7.639450e-02</td>\n",
" <td>-1.260974e-01</td>\n",
" <td>-1.377672e-01</td>\n",
" </tr>\n",
" <tr>\n",
" <td>25%</td>\n",
" <td>-3.729927e-02</td>\n",
" <td>-4.464164e-02</td>\n",
" <td>-3.422907e-02</td>\n",
" <td>-3.665645e-02</td>\n",
" <td>-3.424784e-02</td>\n",
" <td>-3.035840e-02</td>\n",
" <td>-3.511716e-02</td>\n",
" <td>-3.949338e-02</td>\n",
" <td>-3.324879e-02</td>\n",
" <td>-3.317903e-02</td>\n",
" </tr>\n",
" <tr>\n",
" <td>50%</td>\n",
" <td>5.383060e-03</td>\n",
" <td>-4.464164e-02</td>\n",
" <td>-7.283766e-03</td>\n",
" <td>-5.670611e-03</td>\n",
" <td>-4.320866e-03</td>\n",
" <td>-3.819065e-03</td>\n",
" <td>-6.584468e-03</td>\n",
" <td>-2.592262e-03</td>\n",
" <td>-1.947634e-03</td>\n",
" <td>-1.077698e-03</td>\n",
" </tr>\n",
" <tr>\n",
" <td>75%</td>\n",
" <td>3.807591e-02</td>\n",
" <td>5.068012e-02</td>\n",
" <td>3.124802e-02</td>\n",
" <td>3.564384e-02</td>\n",
" <td>2.835801e-02</td>\n",
" <td>2.984439e-02</td>\n",
" <td>2.931150e-02</td>\n",
" <td>3.430886e-02</td>\n",
" <td>3.243323e-02</td>\n",
" <td>2.791705e-02</td>\n",
" </tr>\n",
" <tr>\n",
" <td>max</td>\n",
" <td>1.107267e-01</td>\n",
" <td>5.068012e-02</td>\n",
" <td>1.705552e-01</td>\n",
" <td>1.320442e-01</td>\n",
" <td>1.539137e-01</td>\n",
" <td>1.987880e-01</td>\n",
" <td>1.811791e-01</td>\n",
" <td>1.852344e-01</td>\n",
" <td>1.335990e-01</td>\n",
" <td>1.356118e-01</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0 1 2 3 4 \\\n",
"count 4.420000e+02 4.420000e+02 4.420000e+02 4.420000e+02 4.420000e+02 \n",
"mean -3.639623e-16 1.309912e-16 -8.013951e-16 1.289818e-16 -9.042540e-17 \n",
"std 4.761905e-02 4.761905e-02 4.761905e-02 4.761905e-02 4.761905e-02 \n",
"min -1.072256e-01 -4.464164e-02 -9.027530e-02 -1.123996e-01 -1.267807e-01 \n",
"25% -3.729927e-02 -4.464164e-02 -3.422907e-02 -3.665645e-02 -3.424784e-02 \n",
"50% 5.383060e-03 -4.464164e-02 -7.283766e-03 -5.670611e-03 -4.320866e-03 \n",
"75% 3.807591e-02 5.068012e-02 3.124802e-02 3.564384e-02 2.835801e-02 \n",
"max 1.107267e-01 5.068012e-02 1.705552e-01 1.320442e-01 1.539137e-01 \n",
"\n",
" 5 6 7 8 9 \n",
"count 4.420000e+02 4.420000e+02 4.420000e+02 4.420000e+02 4.420000e+02 \n",
"mean 1.301121e-16 -4.563971e-16 3.863174e-16 -3.848103e-16 -3.398488e-16 \n",
"std 4.761905e-02 4.761905e-02 4.761905e-02 4.761905e-02 4.761905e-02 \n",
"min -1.156131e-01 -1.023071e-01 -7.639450e-02 -1.260974e-01 -1.377672e-01 \n",
"25% -3.035840e-02 -3.511716e-02 -3.949338e-02 -3.324879e-02 -3.317903e-02 \n",
"50% -3.819065e-03 -6.584468e-03 -2.592262e-03 -1.947634e-03 -1.077698e-03 \n",
"75% 2.984439e-02 2.931150e-02 3.430886e-02 3.243323e-02 2.791705e-02 \n",
"max 1.987880e-01 1.811791e-01 1.852344e-01 1.335990e-01 1.356118e-01 "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"features = pd.DataFrame(X)\n",
"features.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down