Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
115 changes: 115 additions & 0 deletions src/FastSerialization/SegmentedDictionary/HashHelpers.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
// Tests copied from dotnet/roslyn repo. Original source code can be found here:
// https://github.com/dotnet/roslyn/blob/main/src/Dependencies/Collections/Internal/HashHelpers.cs

using System;
using System.Diagnostics;
using System.Runtime.CompilerServices;

namespace Microsoft.Diagnostics.FastSerialization
{
internal static class HashHelpers
{
// This is the maximum prime smaller than Array.MaxArrayLength
public const int MaxPrimeArrayLength = 0x7FEFFFFD;

public const int HashPrime = 101;

// Table of prime numbers to use as hash table sizes.
// A typical resize algorithm would pick the smallest prime number in this array
// that is larger than twice the previous capacity.
// Suppose our Hashtable currently has capacity x and enough elements are added
// such that a resize needs to occur. Resizing first computes 2x then finds the
// first prime in the table greater than 2x, i.e. if primes are ordered
// p_1, p_2, ..., p_i, ..., it finds p_n such that p_n-1 < 2x < p_n.
// Doubling is important for preserving the asymptotic complexity of the
// hashtable operations such as add. Having a prime guarantees that double
// hashing does not lead to infinite loops. IE, your hash function will be
// h1(key) + i*h2(key), 0 <= i < size. h2 and the size must be relatively prime.
// We prefer the low computation costs of higher prime numbers over the increased
// memory allocation of a fixed prime number i.e. when right sizing a HashSet.
private static readonly int[] s_primes =
{
3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293, 353, 431, 521, 631, 761, 919,
1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419, 10103, 12143, 14591,
17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523, 108631, 130363, 156437,
187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403, 968897, 1162687, 1395263,
1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471, 7199369
};

public static bool IsPrime(int candidate)
{
if ((candidate & 1) != 0)
{
var limit = (int)Math.Sqrt(candidate);
for (var divisor = 3; divisor <= limit; divisor += 2)
{
if ((candidate % divisor) == 0)
return false;
}
return true;
}
return candidate == 2;
}

public static int GetPrime(int min)
{
if (min < 0)
throw new ArgumentException("Collection's capacity overflowed and went negative.");

foreach (var prime in s_primes)
{
if (prime >= min)
return prime;
}

// Outside of our predefined table. Compute the hard way.
for (var i = (min | 1); i < int.MaxValue; i += 2)
{
if (IsPrime(i) && ((i - 1) % HashPrime != 0))
return i;
}
return min;
}

// Returns size of hashtable to grow to.
public static int ExpandPrime(int oldSize)
{
var newSize = 2 * oldSize;

// Allow the hashtables to grow to maximum possible size (~2G elements) before encountering capacity overflow.
// Note that this check works even when _items.Length overflowed thanks to the (uint) cast
if ((uint)newSize > MaxPrimeArrayLength && MaxPrimeArrayLength > oldSize)
{
Debug.Assert(MaxPrimeArrayLength == GetPrime(MaxPrimeArrayLength), "Invalid MaxPrimeArrayLength");
return MaxPrimeArrayLength;
}

return GetPrime(newSize);
}

/// <summary>Returns approximate reciprocal of the divisor: ceil(2**64 / divisor).</summary>
/// <remarks>This should only be used on 64-bit.</remarks>
public static ulong GetFastModMultiplier(uint divisor) =>
ulong.MaxValue / divisor + 1;

/// <summary>Performs a mod operation using the multiplier pre-computed with <see cref="GetFastModMultiplier"/>.</summary>
/// <remarks>
/// PERF: This improves performance in 64-bit scenarios at the expense of performance in 32-bit scenarios. Since
/// we only build a single AnyCPU binary, we opt for improved performance in the 64-bit scenario.
/// </remarks>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static uint FastMod(uint value, uint divisor, ulong multiplier)
{
// We use modified Daniel Lemire's fastmod algorithm (https://github.com/dotnet/runtime/pull/406),
// which allows to avoid the long multiplication if the divisor is less than 2**31.
Debug.Assert(divisor <= int.MaxValue);

// This is equivalent of (uint)Math.BigMul(multiplier * value, divisor, out _). This version
// is faster than BigMul currently because we only need the high bits.
var highbits = (uint)(((((multiplier * value) >> 32) + 1) * divisor) >> 32);

Debug.Assert(highbits == value % divisor);
return highbits;
}
}
}
Loading