Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions .travis/setup_onnx_target.sh
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
export TRAVIS=1

echo "This is a CI test for onnx-tf master with onnx 1.6.0 and tf 2.2 release."
docker pull winnietsang/onnx-tensorflow:onnx1.6.0-tf2.2
docker run -t -d --name=test winnietsang/onnx-tensorflow:onnx1.6.0-tf2.2 /bin/bash
echo "This is a CI test for onnx-tf master with onnx 1.7.0 and tf 2.2 release."
docker pull winnietsang/onnx-tensorflow:onnx1.7.0-tf2.2
docker run -t -d --name=test winnietsang/onnx-tensorflow:onnx1.7.0-tf2.2 /bin/bash
2 changes: 1 addition & 1 deletion ONNX_VERSION_NUMBER
Original file line number Diff line number Diff line change
@@ -1 +1 @@
1.5.0
1.6.0
17 changes: 4 additions & 13 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ The specific ONNX release version that we support in the master branch of ONNX-T

To install the latest version of ONNX-TF via pip, run `pip install onnx-tf`.

Because users often have their own preferences for which variant of Tensorflow to install (i.e., a GPU version instead of a CPU version), we do not explicitly require tensorflow in the installation script. It is therefore users' responsibility to ensure that the proper variant of Tensorflow is available to ONNX-TF. Moreover, we require Tensorflow version == 1.15.0.
Because users often have their own preferences for which variant of Tensorflow to install (i.e., a GPU version instead of a CPU version), we do not explicitly require tensorflow in the installation script. It is therefore users' responsibility to ensure that the proper variant of Tensorflow is available to ONNX-TF. Moreover, we require Tensorflow version == 2.2.0.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nit, here we require == 2.2.0, later in installation we say Tensorflow >= 2.2 I think the TF requirement should be consistent.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@chinhuang007 updated. Please review again.


## Development:

Expand All @@ -50,7 +50,7 @@ Because users often have their own preferences for which variant of Tensorflow t
- Run `git clone https://github.com/onnx/onnx.git && cd onnx`.
- Run `git submodule update --init --recursive`.
- Run `pip install -e .`.
- Install Tensorflow >= 2.0 and tensorflow-addons. (Note for Tensorflow 1.x please refer the [tf-1.x branch](https://github.com/onnx/onnx-tensorflow/tree/tf-1.x))
- Install Tensorflow >= 2.2.0 and tensorflow-addons. (Note for Tensorflow 1.x please refer the [tf-1.x branch](https://github.com/onnx/onnx-tensorflow/tree/tf-1.x))
- Run `git clone https://github.com/onnx/onnx-tensorflow.git && cd onnx-tensorflow`.
- Run `pip install -e .`.

Expand Down Expand Up @@ -83,8 +83,8 @@ Testing requires significant hardware resources, but nonetheless, we highly reco

PS. Please ensure your code is backward compatible with older version of ONNX. You can easily test it by running the following [docker container](https://hub.docker.com/r/winnietsang/onnx-tensorflow) with your code. If you don't have Docker installed yet, please follow this link to install [Docker](https://docs.docker.com/install/) on your environment.
```
sudo docker pull winnietsang/onnx-tensorflow:onnx1.6.0-tf2.0
sudo docker run -it --name=YOUR-CONTAINER-NAME winnietsang/onnx-tensorflow:onnx1.6.0-tf2.0 /bin/bash
sudo docker pull winnietsang/onnx-tensorflow:onnx1.7.0-tf2.2
sudo docker run -it --name=YOUR-CONTAINER-NAME winnietsang/onnx-tensorflow:onnx1.7.0-tf2.2 /bin/bash
git clone https://github.com/YOUR-USERNAME/onnx-tensorflow.git
cd onnx-tensorflow
git checkout -b YOUR-BRANCH --track remotes/origin/YOUR-BRANCH
Expand All @@ -94,12 +94,3 @@ python3 -m unittest discover test

#### Test Help:
https://docs.python.org/2/library/unittest.html

## Authors:
Arpith Jacob (IBM Research)

Tian Jin (IBM Research)

Gheorghe-Teodor Bercea (IBM Research)

Wenhao Hu (LeapMind)
2 changes: 1 addition & 1 deletion VERSION_NUMBER
Original file line number Diff line number Diff line change
@@ -1 +1 @@
1.5.0
1.6.0
1 change: 1 addition & 0 deletions Versioning.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,4 @@ ONNX-Tensorflow version|ONNX version|Tensorflow version
1.2.1|1.1.2|1.5
1.3.0|1.3.0|1.13.1
1.5.0|1.5.0|1.15.0
1.6.0|1.6.0|2.2.0
383 changes: 192 additions & 191 deletions doc/support_status.md

Large diffs are not rendered by default.

205 changes: 205 additions & 0 deletions doc/support_status_v1_6_0.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,205 @@
# ONNX-Tensorflow Support Status
|||
|-:|:-|
|ONNX-Tensorflow Version|v1.6.0|
|ONNX Version|v1.6.0|
|Tensorflow Version|v2.2.0|

Notes:
* Values that are new or updated from a previous opset version are in bold.
* -: not defined in corresponding ONNX opset version
* \*: the operator is deprecated
* :small_red_triangle:: not supported yet
* :small_orange_diamond:: partially supported
* the rest are all supported

||||||||||||||
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|**ONNX Operator**|**Opset 1**|**Opset 2**|**Opset 3**|**Opset 4**|**Opset 5**|**Opset 6**|**Opset 7**|**Opset 8**|**Opset 9**|**Opset 10**|**Opset 11**|**ONNX Operator**|
|Abs|**1**|1|1|1|1|**6**|6|6|6|6|6|Abs|
|Acos|-|-|-|-|-|-|**7**|7|7|7|7|Acos|
|Acosh|-|-|-|-|-|-|-|-|**9**|9|9|Acosh|
|Add|**1**|1|1|1|1|**6**|**7**|7|7|7|7|Add|
|And|**1**|1|1|1|1|1|**7**|7|7|7|7|And|
|ArgMax|**1**|1|1|1|1|1|1|1|1|1|**11**|ArgMax|
|ArgMin|**1**|1|1|1|1|1|1|1|1|1|**11**|ArgMin|
|Asin|-|-|-|-|-|-|**7**|7|7|7|7|Asin|
|Asinh|-|-|-|-|-|-|-|-|**9**|9|9|Asinh|
|Atan|-|-|-|-|-|-|**7**|7|7|7|7|Atan|
|Atanh|-|-|-|-|-|-|-|-|**9**|9|9|Atanh|
|AveragePool|**1**|1|1|1|1|1|**7**|7|7|**10**|**11**|AveragePool|
|BatchNormalization|**1**|1|1|1|1|**6**|**7**|7|**9**|9|9|BatchNormalization|
|BitShift|-|-|-|-|-|-|-|-|-|-|**11**|BitShift|
|Cast|**1**:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|**6**:small_orange_diamond:|6:small_orange_diamond:|6:small_orange_diamond:|**9**:small_orange_diamond:|9:small_orange_diamond:|9:small_orange_diamond:|Cast|
|Ceil|**1**|1|1|1|1|**6**|6|6|6|6|6|Ceil|
|Clip|**1**:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|**6**:small_orange_diamond:|6:small_orange_diamond:|6:small_orange_diamond:|6:small_orange_diamond:|6:small_orange_diamond:|**11**:small_orange_diamond:|Clip|
|Compress|-|-|-|-|-|-|-|-|**9**|9|**11**|Compress|
|Concat|**1**|1|1|**4**|4|4|4|4|4|4|**11**|Concat|
|ConcatFromSequence|-|-|-|-|-|-|-|-|-|-|**11**:small_orange_diamond:|ConcatFromSequence|
|Constant|**1**|1|1|1|1|1|1|1|**9**|9|**11**|Constant|
|ConstantOfShape|-|-|-|-|-|-|-|-|**9**|9|9|ConstantOfShape|
|Conv|**1**|1|1|1|1|1|1|1|1|1|**11**|Conv|
|ConvInteger|-|-|-|-|-|-|-|-|-|**10**|10|ConvInteger|
|ConvTranspose|**1**:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|**11**:small_orange_diamond:|ConvTranspose|
|Cos|-|-|-|-|-|-|**7**|7|7|7|7|Cos|
|Cosh|-|-|-|-|-|-|-|-|**9**|9|9|Cosh|
|CumSum|-|-|-|-|-|-|-|-|-|-|**11**:small_orange_diamond:|CumSum|
|DepthToSpace|**1**|1|1|1|1|1|1|1|1|1|**11**|DepthToSpace|
|DequantizeLinear|-|-|-|-|-|-|-|-|-|**10**|10|DequantizeLinear|
|Det|-|-|-|-|-|-|-|-|-|-|**11**|Det|
|Div|**1**|1|1|1|1|**6**|**7**|7|7|7|7|Div|
|Dropout|**1**|1|1|1|1|**6**|**7**|7|7|**10**|10|Dropout|
|DynamicQuantizeLinear|-|-|-|-|-|-|-|-|-|-|**11**|DynamicQuantizeLinear|
|Elu|**1**|1|1|1|1|**6**|6|6|6|6|6|Elu|
|Equal|**1**:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|**7**:small_orange_diamond:|7:small_orange_diamond:|7:small_orange_diamond:|7:small_orange_diamond:|**11**:small_orange_diamond:|Equal|
|Erf|-|-|-|-|-|-|-|-|**9**|9|9|Erf|
|Exp|**1**|1|1|1|1|**6**|6|6|6|6|6|Exp|
|Expand|-|-|-|-|-|-|-|**8**|8|8|8|Expand|
|EyeLike|-|-|-|-|-|-|-|-|**9**|9|9|EyeLike|
|Flatten|**1**|1|1|1|1|1|1|1|**9**|9|**11**|Flatten|
|Floor|**1**|1|1|1|1|**6**|6|6|6|6|6|Floor|
|GRU|**1**:small_orange_diamond:|1:small_orange_diamond:|**3**:small_orange_diamond:|3:small_orange_diamond:|3:small_orange_diamond:|3:small_orange_diamond:|**7**:small_orange_diamond:|7:small_orange_diamond:|7:small_orange_diamond:|7:small_orange_diamond:|7:small_orange_diamond:|GRU|
|Gather|**1**|1|1|1|1|1|1|1|1|1|**11**|Gather|
|GatherElements|-|-|-|-|-|-|-|-|-|-|**11**|GatherElements|
|GatherND|-|-|-|-|-|-|-|-|-|-|**11**|GatherND|
|Gemm|**1**|1|1|1|1|**6**|**7**|7|**9**|9|**11**|Gemm|
|GlobalAveragePool|**1**|1|1|1|1|1|1|1|1|1|1|GlobalAveragePool|
|GlobalLpPool|**1**|**2**|2|2|2|2|2|2|2|2|2|GlobalLpPool|
|GlobalMaxPool|**1**|1|1|1|1|1|1|1|1|1|1|GlobalMaxPool|
|Greater|**1**|1|1|1|1|1|**7**|7|**9**|9|9|Greater|
|HardSigmoid|**1**|1|1|1|1|**6**|6|6|6|6|6|HardSigmoid|
|Hardmax|**1**|1|1|1|1|1|1|1|1|1|**11**|Hardmax|
|Identity|**1**|1|1|1|1|1|1|1|1|1|1|Identity|
|If|**1**|1|1|1|1|1|1|1|1|1|**11**|If|
|InstanceNormalization|**1**|1|1|1|1|**6**|6|6|6|6|6|InstanceNormalization|
|IsInf|-|-|-|-|-|-|-|-|-|**10**|10|IsInf|
|IsNaN|-|-|-|-|-|-|-|-|**9**|9|9|IsNaN|
|LRN|**1**|1|1|1|1|1|1|1|1|1|1|LRN|
|LSTM|**1**:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|**7**:small_orange_diamond:|7:small_orange_diamond:|7:small_orange_diamond:|7:small_orange_diamond:|7:small_orange_diamond:|LSTM|
|LeakyRelu|**1**|1|1|1|1|**6**|6|6|6|6|6|LeakyRelu|
|Less|**1**|1|1|1|1|1|**7**|7|**9**|9|9|Less|
|Log|**1**|1|1|1|1|**6**|6|6|6|6|6|Log|
|LogSoftmax|**1**|1|1|1|1|1|1|1|1|1|**11**|LogSoftmax|
|Loop|**1**|1|1|1|1|1|1|1|1|1|**11**|Loop|
|LpNormalization|**1**|1|1|1|1|1|1|1|1|1|1|LpNormalization|
|LpPool|**1**|**2**|2|2|2|2|2|2|2|2|**11**|LpPool|
|MatMul|**1**|1|1|1|1|1|1|1|**9**|9|9|MatMul|
|MatMulInteger|-|-|-|-|-|-|-|-|-|**10**|10|MatMulInteger|
|Max|**1**|1|1|1|1|**6**|6|**8**|8|8|8|Max|
|MaxPool|**1**:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|**8**:small_orange_diamond:|8:small_orange_diamond:|**10**:small_orange_diamond:|**11**:small_orange_diamond:|MaxPool|
|MaxRoiPool|**1**:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|MaxRoiPool|
|MaxUnpool|-|-|-|-|-|-|-|-|**9**|9|**11**|MaxUnpool|
|Mean|**1**|1|1|1|1|**6**|6|**8**|8|8|8|Mean|
|MeanVarianceNormalization|-|-|-|-|-|-|-|-|**9**|9|9|MeanVarianceNormalization|
|Min|**1**|1|1|1|1|**6**|6|**8**|8|8|8|Min|
|Mod|-|-|-|-|-|-|-|-|-|**10**:small_orange_diamond:|10:small_orange_diamond:|Mod|
|Mul|**1**|1|1|1|1|**6**|**7**|7|7|7|7|Mul|
|Multinomial|-|-|-|-|-|-|**7**:small_red_triangle:|7:small_red_triangle:|7:small_red_triangle:|7:small_red_triangle:|7:small_red_triangle:|Multinomial|
|Neg|**1**|1|1|1|1|**6**|6|6|6|6|6|Neg|
|NonMaxSuppression|-|-|-|-|-|-|-|-|-|**10**|**11**|NonMaxSuppression|
|NonZero|-|-|-|-|-|-|-|-|**9**|9|9|NonZero|
|Not|**1**|1|1|1|1|1|1|1|1|1|1|Not|
|OneHot|-|-|-|-|-|-|-|-|**9**:small_orange_diamond:|9:small_orange_diamond:|**11**:small_orange_diamond:|OneHot|
|Or|**1**|1|1|1|1|1|**7**|7|7|7|7|Or|
|PRelu|**1**|1|1|1|1|**6**|**7**|7|**9**|9|9|PRelu|
|Pad|**1**|**2**|2|2|2|2|2|2|2|2|**11**|Pad|
|Pow|**1**|1|1|1|1|1|**7**|7|7|7|7|Pow|
|QLinearConv|-|-|-|-|-|-|-|-|-|**10**|10|QLinearConv|
|QLinearMatMul|-|-|-|-|-|-|-|-|-|**10**|10|QLinearMatMul|
|QuantizeLinear|-|-|-|-|-|-|-|-|-|**10**|10|QuantizeLinear|
|RNN|**1**:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|1:small_orange_diamond:|**7**:small_orange_diamond:|7:small_orange_diamond:|7:small_orange_diamond:|7:small_orange_diamond:|7:small_orange_diamond:|RNN|
|RandomNormal|**1**|1|1|1|1|1|1|1|1|1|1|RandomNormal|
|RandomNormalLike|**1**|1|1|1|1|1|1|1|1|1|1|RandomNormalLike|
|RandomUniform|**1**|1|1|1|1|1|1|1|1|1|1|RandomUniform|
|RandomUniformLike|**1**|1|1|1|1|1|1|1|1|1|1|RandomUniformLike|
|Range|-|-|-|-|-|-|-|-|-|-|**11**|Range|
|Reciprocal|**1**|1|1|1|1|**6**|6|6|6|6|6|Reciprocal|
|ReduceL1|**1**|1|1|1|1|1|1|1|1|1|**11**|ReduceL1|
|ReduceL2|**1**|1|1|1|1|1|1|1|1|1|**11**|ReduceL2|
|ReduceLogSum|**1**|1|1|1|1|1|1|1|1|1|**11**|ReduceLogSum|
|ReduceLogSumExp|**1**|1|1|1|1|1|1|1|1|1|**11**|ReduceLogSumExp|
|ReduceMax|**1**|1|1|1|1|1|1|1|1|1|**11**|ReduceMax|
|ReduceMean|**1**|1|1|1|1|1|1|1|1|1|**11**|ReduceMean|
|ReduceMin|**1**|1|1|1|1|1|1|1|1|1|**11**|ReduceMin|
|ReduceProd|**1**|1|1|1|1|1|1|1|1|1|**11**|ReduceProd|
|ReduceSum|**1**|1|1|1|1|1|1|1|1|1|**11**|ReduceSum|
|ReduceSumSquare|**1**|1|1|1|1|1|1|1|1|1|**11**|ReduceSumSquare|
|Relu|**1**|1|1|1|1|**6**|6|6|6|6|6|Relu|
|Reshape|**1**|1|1|1|**5**|5|5|5|5|5|5|Reshape|
|Resize|-|-|-|-|-|-|-|-|-|**10**:small_orange_diamond:|**11**:small_orange_diamond:|Resize|
|ReverseSequence|-|-|-|-|-|-|-|-|-|**10**|10|ReverseSequence|
|RoiAlign|-|-|-|-|-|-|-|-|-|**10**:small_red_triangle:|10:small_red_triangle:|RoiAlign|
|Round|-|-|-|-|-|-|-|-|-|-|**11**|Round|
|Scan|-|-|-|-|-|-|-|**8**|**9**|9|**11**|Scan|
|Scatter|-|-|-|-|-|-|-|-|**9**|9|**11**\*|Scatter|
|ScatterElements|-|-|-|-|-|-|-|-|-|-|**11**|ScatterElements|
|ScatterND|-|-|-|-|-|-|-|-|-|-|**11**|ScatterND|
|Selu|**1**|1|1|1|1|**6**|6|6|6|6|6|Selu|
|SequenceAt|-|-|-|-|-|-|-|-|-|-|**11**|SequenceAt|
|SequenceConstruct|-|-|-|-|-|-|-|-|-|-|**11**|SequenceConstruct|
|SequenceEmpty|-|-|-|-|-|-|-|-|-|-|**11**|SequenceEmpty|
|SequenceErase|-|-|-|-|-|-|-|-|-|-|**11**|SequenceErase|
|SequenceInsert|-|-|-|-|-|-|-|-|-|-|**11**|SequenceInsert|
|SequenceLength|-|-|-|-|-|-|-|-|-|-|**11**|SequenceLength|
|Shape|**1**|1|1|1|1|1|1|1|1|1|1|Shape|
|Shrink|-|-|-|-|-|-|-|-|**9**|9|9|Shrink|
|Sigmoid|**1**|1|1|1|1|**6**|6|6|6|6|6|Sigmoid|
|Sign|-|-|-|-|-|-|-|-|**9**|9|9|Sign|
|Sin|-|-|-|-|-|-|**7**|7|7|7|7|Sin|
|Sinh|-|-|-|-|-|-|-|-|**9**|9|9|Sinh|
|Size|**1**|1|1|1|1|1|1|1|1|1|1|Size|
|Slice|**1**|1|1|1|1|1|1|1|1|**10**|**11**|Slice|
|Softmax|**1**|1|1|1|1|1|1|1|1|1|**11**|Softmax|
|Softplus|**1**|1|1|1|1|1|1|1|1|1|1|Softplus|
|Softsign|**1**|1|1|1|1|1|1|1|1|1|1|Softsign|
|SpaceToDepth|**1**|1|1|1|1|1|1|1|1|1|1|SpaceToDepth|
|Split|**1**|**2**|2|2|2|2|2|2|2|2|**11**|Split|
|SplitToSequence|-|-|-|-|-|-|-|-|-|-|**11**:small_orange_diamond:|SplitToSequence|
|Sqrt|**1**|1|1|1|1|**6**|6|6|6|6|6|Sqrt|
|Squeeze|**1**|1|1|1|1|1|1|1|1|1|**11**|Squeeze|
|StringNormalizer|-|-|-|-|-|-|-|-|-|**10**:small_red_triangle:|10:small_red_triangle:|StringNormalizer|
|Sub|**1**|1|1|1|1|**6**|**7**|7|7|7|7|Sub|
|Sum|**1**|1|1|1|1|**6**|6|**8**|8|8|8|Sum|
|Tan|-|-|-|-|-|-|**7**|7|7|7|7|Tan|
|Tanh|**1**|1|1|1|1|**6**|6|6|6|6|6|Tanh|
|TfIdfVectorizer|-|-|-|-|-|-|-|-|**9**|9|9|TfIdfVectorizer|
|ThresholdedRelu|-|-|-|-|-|-|-|-|-|**10**|10|ThresholdedRelu|
|Tile|**1**|1|1|1|1|**6**|6|6|6|6|6|Tile|
|TopK|**1**|1|1|1|1|1|1|1|1|**10**|**11**|TopK|
|Transpose|**1**|1|1|1|1|1|1|1|1|1|1|Transpose|
|Unique|-|-|-|-|-|-|-|-|-|-|**11**:small_red_triangle:|Unique|
|Unsqueeze|**1**|1|1|1|1|1|1|1|1|1|**11**|Unsqueeze|
|Upsample|**1**:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|1:small_red_triangle:|**7**:small_orange_diamond:|7:small_orange_diamond:|**9**:small_orange_diamond:|**10**\*|10\*|Upsample|
|Where|-|-|-|-|-|-|-|-|**9**|9|9|Where|
|Xor|**1**|1|1|1|1|1|**7**|7|7|7|7|Xor|

ONNX-TF Supported Operators / ONNX Operators: 151 / 156

Notes:
1. Cast: Cast string to float32/float64/int32/int64 are not supported in Tensorflow.
2. Clip: Clip input in uint64 is not supported in Tensorflow.
3. ConcatFromSequence: new_axis=1 not supported in Tensorflow.
4. ConvTranspose: ConvTranspose with dilations != 1, or transposed convolution for 4D or higher are not supported in Tensorflow.
5. CumSum: CumSum inputs in uint32/uint64 are not supported in Tensorflow.
6. Equal: Equal inputs in uint16/uint32/uint64 are not supported in Tensorflow.
7. GRU: GRU with clip or GRU with linear_before_reset, or GRU not using sigmoid for z and r, or GRU using Elu as the activation function with alpha != 1, or GRU using HardSigmoid as the activation function with alpha != 0.2 or beta != 0.5 are not supported in TensorFlow.
8. LSTM: LSTM not using sigmoid for `f`, or LSTM not using the same activation for `g` and `h` are not supported in Tensorflow.
9. MaxPool: MaxPoolWithArgmax with pad is None or incompatible mode, or MaxPoolWithArgmax with 4D or higher input, or MaxPoolWithArgmax with column major are not supported in Tensorflow.
10. Mod: Mod Dividend or Divisor in int8/int16/uint8/uint16/uint32/uint64 are not supported in Tensorflow.
11. OneHot: OneHot indices in uint16/uint32/uint64/int8/int16/float16/float/double, or OneHot depth in uint8/uint16/uint32/uint64/int8/int16/int64/float16/float/double are not supported in Tensorflow.
12. RNN: RNN with clip is not supported in Tensorflow.
13. Resize: Resize required 4D input in Tensorflow. For opset 11, only the following attributes and inputs conbination are supported in Tensorflow:
1. mode=nearest, coordinate_transformation_mode=align_corners, nearest_mode=round_prefer_ceil, can use scales(*) or sizes.
2. mode=nearest, coordinate_transformation_mode=asymmetric, nearest_mode=floor, can use scales(*) or sizes.
3. mode=nearest, coordinate_transformation_mode=tf_half_pixel_for_nn, nearest_mode=floor, can use scales(*) or sizes.
4. mode=linear, coordinate_transformation_mode=align_corners, can use scales(*) or sizes.
5. mode=linear, coordinate_transformation_mode=asymmetric, can use scales(*) or sizes.
6. mode=linear, coordinate_transformation_mode=half_pixel, can use scales(*) or sizes.
7. mode=cubic, coordinate_transformation_mode=align_corners, cubic_coeff_a=-0.5, exclude_outside=1, can use scales(*) or sizes.
8. mode=cubic, coordinate_transformation_mode=asymmetric, cubic_coeff_a=-0.5, exclude_outside=1, can use scales(*) or sizes.
9. mode=cubic, coordinate_transformation_mode=half_pixel, cubic_coeff_a=-0.5, exclude_outside=1, can use scales(*) or sizes.
10. mode=nearest, coordinate_transformation_mode=tf_crop_and_resize, extrapolation_value=any_float_value, nearest_mode=round_prefer_ceil, can use scales or sizes.
11. mode=linear, coordinate_transformation_mode=tf_crop_and_resize, extrapolation_value=any_float_value, can use scales or sizes.
- Note (*): The accuracy of your model will go down, if the height and the width of the new sizes(scales * origial sizes) are not in whole numbers.
14. SplitToSequence: Scalar as the split input not supported.
15. Upsample: Upsample required 4D input in Tensorflow.
Loading