Reltio MCP Server is a lightweight, plugin-based Model Context Protocol (MCP) server designed to perform advanced entity matching with language models in Reltio environments.
DISCLAIMER: By entering in your credentials and consuming the Reltio MCP Server – Developer Edition, you may be connecting to the Reltio Platform via API calls. Any and all API calls will be counted against the API call entitlements set out in your SaaS Subscription Agreement (the "Agreement") with Reltio. API calls in excess of those entitlements, including any API calls made while consuming the server, could result in Overages, as set out in the Agreement.
- Available Tools
- Environment Configuration
- Server Prerequisites
- Client Prerequisites
- Running the Server
- Integration with Claude Desktop App
- Custom MCP Client Integration
- Testing
- Agent Client
Tool Name | Description |
---|---|
search_entities_tool |
Advanced search for entities |
get_entity_tool |
Retrieve details of an entity |
update_entity_attributes_tool |
Update an entity attributes |
get_entity_matches_tool |
Find matches for a given entity |
get_entity_match_history_tool |
View match history of an entity |
get_relation_tool |
Retrieve relation details |
find_matches_by_match_score_tool |
Find matches within a score range |
find_matches_by_confidence_tool |
Find matches by confidence level |
get_total_matches_tool |
Get total count of potential matches |
get_total_matches_by_entity_type_tool |
Get counts of matches by entity type |
merge_entities_tool |
Merge two entities |
reject_entity_match_tool |
Mark an entity as not a match |
unmerge_entity_by_contributor_tool |
Unmerge a contributor entity keeping profiles under it |
unmerge_entity_tree_by_contributor_tool |
Unmerge a contributor entity and all profiles under it |
export_merge_tree_tool |
Export merge tree for all entities of tenant |
get_business_configuration_tool |
Business configuration of a tenant |
get_tenant_permissions_metadata_tool |
Tenant permission/security metadata |
get_tenant_metadata_tool |
Get metadata details for a specific tenant, including schema and type counts. |
get_data_model_definition_tool |
Retrieve the full data model definition for a tenant (entity, relation, etc. types). |
get_entity_type_definition_tool |
Get the definition for a specific entity type in the tenant. |
get_change_request_type_definition_tool |
Get the definition for a specific change request type in the tenant. |
get_relation_type_definition_tool |
Get the definition for a specific relation type in the tenant. |
get_interaction_type_definition_tool |
Get the definition for a specific interaction type in the tenant. |
get_graph_type_definition_tool |
Get the definition for a specific graph type in the tenant. |
get_grouping_type_definition_tool |
Get the definition for a specific grouping type in the tenant. |
get_merge_activities_tool |
Retrieve entity merge activity events with flexible filtering |
capabilities_tool |
Lists all available tools |
Create a .env
file in the root directory:
RELTIO_SERVER_NAME=RELTIO_MCP_SVR_NAME
RELTIO_ENVIRONMENT=RELTIO_ENVIRONMENT
RELTIO_CLIENT_ID=RELTIO_CLIENT_ID
RELTIO_CLIENT_SECRET=RELTIO_CLIENT_SECRET
RELTIO_TENANT=RELTIO_TENANT
RELTIO_AUTH_SERVER=RELTIO_AUTH_SEVER # Default: https://auth.reltio.com
- Python ≥ 3.10
- (Optional) Docker installed, only if you choose to run the server with Docker - See instructions below
- (Optional) uv (python package manager) installed, only if you choose to run the server without Docker - See instructions below
If you want to consume the server from Claude AI (Anthropic):
- Claude Desktop App installed from claude.ai
- Node.js
If you want to consume the server from a custom client (OpenAI, Gemini, Anthropic)
- Go to the section below on Custom MCP Client Integration
Run this script to automate setup (virtualenv, install, Claude config injection):
⚠️ Right-clicksetup.bat
→ Properties → Unblock → Run as Admin (if SmartScreen warning appears)
setup.bat
bash setup.sh
You then might need to activate your newly-created virtual environment if it was not activated in your terminal already
source .venv/bin/activate
After initial setup (it applies to Windows/macOS/Linux), run this command:
mcp install --with requests --with pyyaml main.py -f .env
Open Claude (or your custom MCP Client) and start using it.
Make sure you have Docker installed (https://www.docker.com/products/docker-desktop/)
Open a terminal and run this command:
docker compose up -d --build
To configure Claude to use this MCP server, please go into the next section.
You must follow these steps ONLY if you are running the server with docker (option 2 above). Option 1 does not require this subsequent step.
Open the Claude app on your system.
- Open Claude Desktop.
- Click the hamburger menu (top-left).
- Go to:
Settings → Developer → Edit Config
.
- Open Claude Desktop.
- Click
Claude
from the macOS menu bar. - Go to:
Settings → Developer → Edit Config
.
Add this entry to the claude_desktop_config.json
file:
{
"mcpServers": {
"reltio-mcp-server": {
"command": "npx",
"args": [
"[email protected]",
"http://localhost:8000/sse"
]
}
}
}
Always Restart the Claude Desktop app after making changes.
If Claude logs show ECONNREFUSED
, the mcp-remote
service (possibly at http://localhost:8000/sse
) might be the issue.
ps aux | grep "mcp-remote http://localhost:8000/sse" | grep -v grep | awk '{print $2}' | xargs kill
Get-CimInstance -ClassName Win32_Process -Filter "CommandLine LIKE '%mcp-remote http://localhost:8000/sse%'" | ForEach-Object { Stop-Process -Id $_.ProcessId -Force }
Install dependencies:
pip install -r requirements.txt
Ensure your MCP server is running locally before executing clients.
python ./clients/mcp_claude_client.py
You will need:
- Anthropic API Key (
sk-ant-api...
) - Claude Model ID (e.g.,
claude-3-opus-20240229
) - MCP Server URL (e.g.,
http://localhost:8000/sse
)
python ./clients/mcp_gemini_client.py
Required:
- Google API Key (
AIza...
) - Gemini Model ID (e.g.,
gemini-1.5-pro
) - MCP Server URL
python ./clients/mcp_openai_client.py
Required:
- OpenAI API Key (
sk-...
) - OpenAI Model ID (
gpt-4-turbo
) - MCP Server URL
docker-compose -f docker-compose-test.yaml up -d --build
pip install -r requirements_tests.txt
./run_tests.sh --coverage
tests/unit/test_server.py
tests/unit/test_server_structure.py
tests/unit/test_server_error_handling.py
tests/unit/test_tools_activity.py
tests/unit/test_main.py
A CLI chat bot that connects to Reltio MCP server using OAuth 2.0 authentication and provides an interactive interface for querying Reltio data.
cd clients/agent_with_mcp
pip install -r requirements.txt
Edit the configuration constants in agent_client.py
:
# Reltio Configuration
NAMESPACE = "your_namespace" # Your Reltio namespace
RELTIO_CLIENT_ID = "your_client_id" # Your Reltio client ID
RELTIO_CLIENT_SECRET = "your_client_secret" # Your Reltio client secret
# Model Configuration
MODEL_ID = "anthropic:claude-3-5-sonnet-20241022" # Supported: anthropic, google_genai, openai
API_KEY = "your_api_key" # API key for the model provider
python agent_client.py
The client will:
- Open a browser for OAuth authentication
- Establish connection to Reltio MCP server
- Provide an interactive chat interface
- Anthropic:
anthropic:claude-3-5-sonnet-20241022
- Google:
google_genai:gemini-2.0-flash-001
- OpenAI:
openai:gpt-4o-mini