Skip to content
Prev Previous commit
Next Next commit
Deprecate is_RelativeNumberField
  • Loading branch information
Matthias Koeppe committed Jun 1, 2024
commit 1429056bae3fadc3dd19a4a04ff08a1d30a0eb1b
4 changes: 2 additions & 2 deletions src/sage/rings/number_field/number_field_element.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -1804,8 +1804,8 @@ cdef class NumberFieldElement(NumberFieldElement_base):
- Francis Clarke (2010-12-26)
"""
K = self.parent()
from sage.rings.number_field.number_field_rel import is_RelativeNumberField
if (not is_RelativeNumberField(L)) or L.base_field() != K:
from sage.rings.number_field.number_field_rel import NumberField_relative
if not isinstance(L, NumberField_relative) or L.base_field() != K:
raise ValueError("L (=%s) must be a relative number field with base field K (=%s) in rnfisnorm" % (L, K))

rnf_data = K.pari_rnfnorm_data(L, proof=proof)
Expand Down
10 changes: 9 additions & 1 deletion src/sage/rings/number_field/number_field_rel.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,10 @@ def is_RelativeNumberField(x):
sage: from sage.rings.number_field.number_field_rel import is_RelativeNumberField
sage: x = polygen(ZZ, 'x')
sage: is_RelativeNumberField(NumberField(x^2+1,'a'))
doctest:warning...
DeprecationWarning: The function is_RelativeNumberField is deprecated;
use 'isinstance(..., NumberField_relative)' instead.
See https://github.com/sagemath/sage/issues/38124 for details.
False
sage: k.<a> = NumberField(x^3 - 2)
sage: l.<b> = k.extension(x^3 - 3); l
Expand All @@ -132,6 +136,10 @@ def is_RelativeNumberField(x):
sage: is_RelativeNumberField(QQ)
False
"""
from sage.misc.superseded import deprecation
deprecation(38124,
"The function is_RelativeNumberField is deprecated; "
"use 'isinstance(..., NumberField_relative)' instead.")
return isinstance(x, NumberField_relative)


Expand Down Expand Up @@ -1311,7 +1319,7 @@ def is_isomorphic_relative(self, other, base_isom=None):
Ring endomorphism of Number Field in z9 with defining polynomial x^6 + x^3 + 1
Defn: z9 |--> z9^4
"""
if is_RelativeNumberField(other):
if isinstance(other, NumberField_relative):
s_base_field = self.base_field()
o_base_field = other.base_field()
if base_isom is None:
Expand Down
4 changes: 2 additions & 2 deletions src/sage/rings/polynomial/polynomial_quotient_ring_element.py
Original file line number Diff line number Diff line change
Expand Up @@ -565,8 +565,8 @@ def field_extension(self, names):

f = R.hom([alpha], F, check=False)

import sage.rings.number_field.number_field_rel as number_field_rel
if number_field_rel.is_RelativeNumberField(F):
from sage.rings.number_field.number_field_rel import NumberField_relative
if isinstance(F, NumberField_relative):

base_map = F.base_field().hom([R.base_ring().gen()])
g = F.Hom(R)(x, base_map)
Expand Down