Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions abcdrl/ddpg.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,7 +227,10 @@ def sample(self, obs: np.ndarray) -> np.ndarray:
)
act_ts += noise
act_np = act_ts.cpu().numpy().clip(self.kwargs["act_space"].low, self.kwargs["act_space"].high)

self.sample_step += self.kwargs["num_envs"]
if self.sample_step % self.kwargs["policy_frequency"] == 0:
self.alg.sync_target()
return act_np

def learn(self, data: ReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
Expand All @@ -242,8 +245,6 @@ def learn(self, data: ReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
)

log_data = self.alg.learn(data_ts, self.sample_step % self.kwargs["policy_frequency"] == 0)
if self.sample_step % self.kwargs["policy_frequency"] == 0:
self.alg.sync_target()
self.learn_step += 1
return log_data

Expand Down
5 changes: 3 additions & 2 deletions abcdrl/ddqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,10 @@ def sample(self, obs: np.ndarray) -> np.ndarray:
with torch.no_grad():
_, act_ts = self.alg.predict(obs_ts).max(dim=1)
act_np = act_ts.cpu().numpy()

self.sample_step += self.kwargs["num_envs"]
if self.sample_step % self.kwargs["target_network_frequency"] == 0:
self.alg.sync_target()
return act_np

def learn(self, data: ReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
Expand All @@ -187,8 +190,6 @@ def learn(self, data: ReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
)

log_data = self.alg.learn(data_ts)
if self.sample_step % self.kwargs["target_network_frequency"] == 0:
self.alg.sync_target()
self.learn_step += 1
log_data["epsilon"] = self._get_epsilon()
return log_data
Expand Down
5 changes: 3 additions & 2 deletions abcdrl/dqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,10 @@ def sample(self, obs: np.ndarray) -> np.ndarray:
with torch.no_grad():
_, act_ts = self.alg.predict(obs_ts).max(dim=1)
act_np = act_ts.cpu().numpy()

self.sample_step += self.kwargs["num_envs"]
if self.sample_step % self.kwargs["target_network_frequency"] == 0:
self.alg.sync_target()
return act_np

def learn(self, data: ReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
Expand All @@ -185,8 +188,6 @@ def learn(self, data: ReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
)

log_data = self.alg.learn(data_ts)
if self.sample_step % self.kwargs["target_network_frequency"] == 0:
self.alg.sync_target()
self.learn_step += 1
log_data["epsilon"] = self._get_epsilon()
return log_data
Expand Down
5 changes: 3 additions & 2 deletions abcdrl/pdqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -281,7 +281,10 @@ def sample(self, obs: np.ndarray) -> np.ndarray:
with torch.no_grad():
_, act_ts = self.alg.predict(obs_ts).max(dim=1)
act_np = act_ts.cpu().numpy()

self.sample_step += self.kwargs["num_envs"]
if self.sample_step % self.kwargs["target_network_frequency"] == 0:
self.alg.sync_target()
return act_np

def learn(self, data: PrioritizedReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
Expand All @@ -296,8 +299,6 @@ def learn(self, data: PrioritizedReplayBuffer.Samples[np.ndarray]) -> dict[str,
)

log_data = self.alg.learn(data_ts)
if self.sample_step % self.kwargs["target_network_frequency"] == 0:
self.alg.sync_target()
self.learn_step += 1
log_data["epsilon"] = self._get_epsilon()
return log_data
Expand Down
5 changes: 3 additions & 2 deletions abcdrl/sac.py
Original file line number Diff line number Diff line change
Expand Up @@ -274,7 +274,10 @@ def sample(self, obs: np.ndarray) -> np.ndarray:
with torch.no_grad():
act_ts = self.alg.predict(obs_ts)
act_np = act_ts.cpu().numpy()

self.sample_step += self.kwargs["num_envs"]
if self.sample_step % self.kwargs["target_network_frequency"] == 0:
self.alg.sync_target()
return act_np

def learn(self, data: ReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
Expand All @@ -289,8 +292,6 @@ def learn(self, data: ReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
)

log_data = self.alg.learn(data_ts, self.sample_step % self.kwargs["policy_frequency"] == 0)
if self.sample_step % self.kwargs["target_network_frequency"] == 0:
self.alg.sync_target()
self.learn_step += 1
return log_data

Expand Down
5 changes: 3 additions & 2 deletions abcdrl/td3.py
Original file line number Diff line number Diff line change
Expand Up @@ -253,7 +253,10 @@ def sample(self, obs: np.ndarray) -> np.ndarray:
)
act_ts += noise
act_np = act_ts.cpu().numpy().clip(self.kwargs["act_space"].low, self.kwargs["act_space"].high)

self.sample_step += self.kwargs["num_envs"]
if self.sample_step % self.kwargs["policy_frequency"] == 0:
self.alg.sync_target()
return act_np

def learn(self, data: ReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
Expand All @@ -268,8 +271,6 @@ def learn(self, data: ReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
)

log_data = self.alg.learn(data_ts, self.sample_step % self.kwargs["policy_frequency"] == 0)
if self.sample_step % self.kwargs["policy_frequency"] == 0:
self.alg.sync_target()
self.learn_step += 1
return log_data

Expand Down
5 changes: 3 additions & 2 deletions abcdrl_copy_from/dqn_all_wrappers.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,7 +171,10 @@ def sample(self, obs: np.ndarray) -> np.ndarray:
with torch.no_grad():
_, act_ts = self.alg.predict(obs_ts).max(dim=1)
act_np = act_ts.cpu().numpy()

self.sample_step += self.kwargs["num_envs"]
if self.sample_step % self.kwargs["target_network_frequency"] == 0:
self.alg.sync_target()
return act_np

def learn(self, data: ReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
Expand All @@ -186,8 +189,6 @@ def learn(self, data: ReplayBuffer.Samples[np.ndarray]) -> dict[str, Any]:
)

log_data = self.alg.learn(data_ts)
if self.sample_step % self.kwargs["target_network_frequency"] == 0:
self.alg.sync_target()
self.learn_step += 1
log_data["epsilon"] = self._get_epsilon()
return log_data
Expand Down