Evaluating a model performance for CIFAR10-C (PyTorch)
Download CIFAR10-C dataset from here.
A default model is ResNet56. it's model file is already contained in src/models/.
If you use your custom model, please do the following procedure.
- Add your model file to
src/models/. - Add a new model option to
test.py.
# ResNet56 (default)
python src/test.py --weight_path <path/to/weight/file> --data_root <path/to/parent/directory/of/cifar10-c>
# Your custom model
python src/test.py --arch <your/model/name> --weight_path <path/to/weight/file> --data_root <path/to/parent/directory/of/cifar10-c>
All corruption accuracy.
This figure will be saved in figs/.
fig_dir: Specify the directory path to save an output figure.weight_dir: Execute an evaluation for all weight files in the specified directory.corruptions: Evaluate a model performance for the specified corruption types.

