Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from cognee.infrastructure.llm.tokenizer.TikToken import (
TikTokenTokenizer,
)
from cognee.shared.rate_limiting import embedding_rate_limiter_context_manager

litellm.set_verbose = False
logger = get_logger("FastembedEmbeddingEngine")
Expand Down Expand Up @@ -68,7 +69,7 @@ def __init__(

@retry(
stop=stop_after_delay(128),
wait=wait_exponential_jitter(2, 128),
wait=wait_exponential_jitter(8, 128),
retry=retry_if_not_exception_type(litellm.exceptions.NotFoundError),
before_sleep=before_sleep_log(logger, logging.DEBUG),
reraise=True,
Expand Down Expand Up @@ -96,11 +97,12 @@ async def embed_text(self, text: List[str]) -> List[List[float]]:
if self.mock:
return [[0.0] * self.dimensions for _ in text]
else:
embeddings = self.embedding_model.embed(
text,
batch_size=len(text),
parallel=None,
)
async with embedding_rate_limiter_context_manager():
embeddings = self.embedding_model.embed(
text,
batch_size=len(text),
parallel=None,
)

return list(embeddings)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
from cognee.infrastructure.llm.tokenizer.TikToken import (
TikTokenTokenizer,
)
from cognee.shared.rate_limiting import embedding_rate_limiter_context_manager

litellm.set_verbose = False
logger = get_logger("LiteLLMEmbeddingEngine")
Expand Down Expand Up @@ -109,13 +110,14 @@ async def embed_text(self, text: List[str]) -> List[List[float]]:
response = {"data": [{"embedding": [0.0] * self.dimensions} for _ in text]}
return [data["embedding"] for data in response["data"]]
else:
response = await litellm.aembedding(
model=self.model,
input=text,
api_key=self.api_key,
api_base=self.endpoint,
api_version=self.api_version,
)
async with embedding_rate_limiter_context_manager():
response = await litellm.aembedding(
model=self.model,
input=text,
api_key=self.api_key,
api_base=self.endpoint,
api_version=self.api_version,
)

return [data["embedding"] for data in response.data]

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,7 @@
from cognee.infrastructure.llm.tokenizer.HuggingFace import (
HuggingFaceTokenizer,
)
from cognee.infrastructure.databases.vector.embeddings.embedding_rate_limiter import (
embedding_rate_limit_async,
embedding_sleep_and_retry_async,
)
from cognee.shared.rate_limiting import embedding_rate_limiter_context_manager
from cognee.shared.utils import create_secure_ssl_context

logger = get_logger("OllamaEmbeddingEngine")
Expand Down Expand Up @@ -101,7 +98,7 @@ async def embed_text(self, text: List[str]) -> List[List[float]]:

@retry(
stop=stop_after_delay(128),
wait=wait_exponential_jitter(2, 128),
wait=wait_exponential_jitter(8, 128),
retry=retry_if_not_exception_type(litellm.exceptions.NotFoundError),
before_sleep=before_sleep_log(logger, logging.DEBUG),
reraise=True,
Expand All @@ -120,14 +117,15 @@ async def _get_embedding(self, prompt: str) -> List[float]:
ssl_context = create_secure_ssl_context()
connector = aiohttp.TCPConnector(ssl=ssl_context)
async with aiohttp.ClientSession(connector=connector) as session:
async with session.post(
self.endpoint, json=payload, headers=headers, timeout=60.0
) as response:
data = await response.json()
if "embeddings" in data:
return data["embeddings"][0]
else:
return data["data"][0]["embedding"]
async with embedding_rate_limiter_context_manager():
async with session.post(
self.endpoint, json=payload, headers=headers, timeout=60.0
) as response:
data = await response.json()
if "embeddings" in data:
return data["embeddings"][0]
else:
return data["data"][0]["embedding"]

def get_vector_size(self) -> int:
"""
Expand Down
Loading
Loading