Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
37 commits
Select commit Hold shift + click to select a range
7ee6cc8
fix docs
davidmyriel Oct 30, 2025
79f5201
fixes
davidmyriel Oct 31, 2025
a068f35
fixes
davidmyriel Oct 31, 2025
3472f62
bash
davidmyriel Oct 31, 2025
0427586
fix tagline and description
davidmyriel Oct 31, 2025
4e03406
fix errors
davidmyriel Oct 31, 2025
e69ff7c
remove agents
davidmyriel Oct 31, 2025
b1fdb71
docs: Fix Readme Instructions (#1706)
Vasilije1990 Nov 1, 2025
1e53138
CI: Fix ollama tests (#1713)
Vasilije1990 Nov 2, 2025
72c20c2
Handle multiple response formats in OllamaEmbeddingEngine
weikao Nov 5, 2025
41b973a
docs(mcp): update available tools documentation
armelhbobdad Nov 5, 2025
a6db281
chore: update videos
hande-k Nov 6, 2025
26c18e9
chore: update videos (#1748)
Vasilije1990 Nov 6, 2025
007c7d4
Fix cypher search (#1739)
pazone Nov 8, 2025
7557e6f
Cherry-pick: Fix cypher search (#1739) (#1763)
Vasilije1990 Nov 9, 2025
44f0498
added release update version
Vasilije1990 Nov 9, 2025
6192d49
fix: added release update version (#1764)
Vasilije1990 Nov 9, 2025
487635b
Update Python version range in README
Vasilije1990 Nov 9, 2025
900dd38
Merge branch 'main' into fix/update-mcp-tools-documentation
armelhbobdad Nov 17, 2025
a5aa58a
docs(mcp): correct tool name in README
armelhbobdad Nov 17, 2025
5353292
Update cognee-mcp/README.md
armelhbobdad Nov 17, 2025
4fcbc96
Merge branch 'fix/update-mcp-tools-documentation' of https://github.c…
armelhbobdad Nov 17, 2025
f996ecf
docs(mcp): update available tools documentation (#1740)
pazone Nov 20, 2025
3fe354e
Handle multiple response formats in OllamaEmbeddingEngine (#1735)
Vasilije1990 Nov 20, 2025
0b20f13
CI: Release drafter configuration
pazone Nov 21, 2025
83e0876
added CI label
pazone Nov 21, 2025
efb9739
CI: mergify config
pazone Nov 21, 2025
dd87acc
CI: Release drafter configuration (#1817)
pazone Nov 21, 2025
a472db5
CI: mergify config (#1818)
pazone Nov 21, 2025
a7d0132
ci(Mergify): configuration update
pazone Nov 21, 2025
d99a7ff
ci(Mergify): configuration update (#1820)
pazone Nov 21, 2025
8b61e1b
fix: adds lance-namespace version fix to toml + fixes lancedb max ver…
hajdul88 Nov 27, 2025
0fd939c
updating url again
hajdul88 Nov 20, 2025
4584182
chore: Update Cognee version
dexters1 Nov 27, 2025
00b60ae
backport: Adds lance-namespace version fix to toml (fixes lancedb iss…
Vasilije1990 Nov 27, 2025
ad75450
Update aiofiles version constraint in pyproject.toml
shanto12 Nov 29, 2025
f7e072f
merge dev
Dec 1, 2025
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions .github/release-drafter.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
name-template: 'v$NEXT_PATCH_VERSION'
tag-template: 'v$NEXT_PATCH_VERSION'

categories:
- title: 'Features'
labels: ['feature', 'enhancement']
- title: 'Bug Fixes'
labels: ['bug', 'fix']
- title: 'Maintenance'
labels: ['chore', 'refactor', 'ci']

change-template: '- $TITLE (#$NUMBER) @$AUTHOR'
template: |
## What’s Changed

$CHANGES

## Contributors

$CONTRIBUTORS
9 changes: 9 additions & 0 deletions .mergify.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
pull_request_rules:
- name: Backport to main when backport_main label is set
conditions:
- label=backport_main
- base=dev
actions:
backport:
branches:
- main
152 changes: 68 additions & 84 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,27 +5,27 @@

<br />

cognee - Memory for AI Agents in 6 lines of code
Cognee - Accurate and Persistent AI Memory

<p align="center">
<a href="https://www.youtube.com/watch?v=1bezuvLwJmw&t=2s">Demo</a>
.
<a href="https://cognee.ai">Learn more</a>
<a href="https://docs.cognee.ai/">Docs</a>
.
<a href="https://cognee.ai">Learn More</a>
·
<a href="https://discord.gg/NQPKmU5CCg">Join Discord</a>
·
<a href="https://www.reddit.com/r/AIMemory/">Join r/AIMemory</a>
.
<a href="https://docs.cognee.ai/">Docs</a>
.
<a href="https://github.com/topoteretes/cognee-community">cognee community repo</a>
<a href="https://github.com/topoteretes/cognee-community">Community Plugins & Add-ons</a>
</p>


[![GitHub forks](https://img.shields.io/github/forks/topoteretes/cognee.svg?style=social&label=Fork&maxAge=2592000)](https://GitHub.com/topoteretes/cognee/network/)
[![GitHub stars](https://img.shields.io/github/stars/topoteretes/cognee.svg?style=social&label=Star&maxAge=2592000)](https://GitHub.com/topoteretes/cognee/stargazers/)
[![GitHub commits](https://badgen.net/github.amrom.workers.devmits/topoteretes/cognee)](https://GitHub.com/topoteretes/cognee/commit/)
[![Github tag](https://badgen.net/github/tag/topoteretes/cognee)](https://github.com/topoteretes/cognee/tags/)
[![GitHub tag](https://badgen.net/github/tag/topoteretes/cognee)](https://github.com/topoteretes/cognee/tags/)
[![Downloads](https://static.pepy.tech/badge/cognee)](https://pepy.tech/project/cognee)
[![License](https://img.shields.io/github/license/topoteretes/cognee?colorA=00C586&colorB=000000)](https://github.com/topoteretes/cognee/blob/main/LICENSE)
[![Contributors](https://img.shields.io/github/contributors/topoteretes/cognee?colorA=00C586&colorB=000000)](https://github.com/topoteretes/cognee/graphs/contributors)
Expand All @@ -41,19 +41,15 @@
</a>
</p>





Build dynamic memory for Agents and replace RAG using scalable, modular ECL (Extract, Cognify, Load) pipelines.
Use your data to build personalized and dynamic memory for AI Agents. Cognee lets you replace RAG with scalable and modular ECL (Extract, Cognify, Load) pipelines.

<p align="center">
🌐 Available Languages
:
<!-- Keep these links. Translations will automatically update with the README. -->
<a href="https://www.readme-i18n.com/topoteretes/cognee?lang=de">Deutsch</a> |
<a href="https://www.readme-i18n.com/topoteretes/cognee?lang=es">Español</a> |
<a href="https://www.readme-i18n.com/topoteretes/cognee?lang=fr">français</a> |
<a href="https://www.readme-i18n.com/topoteretes/cognee?lang=fr">Français</a> |
<a href="https://www.readme-i18n.com/topoteretes/cognee?lang=ja">日本語</a> |
<a href="https://www.readme-i18n.com/topoteretes/cognee?lang=ko">한국어</a> |
<a href="https://www.readme-i18n.com/topoteretes/cognee?lang=pt">Português</a> |
Expand All @@ -67,69 +63,65 @@ Build dynamic memory for Agents and replace RAG using scalable, modular ECL (Ext
</div>
</div>

## About Cognee

Cognee is an open-source tool and platform that transforms your raw data into persistent and dynamic AI memory for Agents. It combines vector search with graph databases to make your documents both searchable by meaning and connected by relationships.

## Get Started

Get started quickly with a Google Colab <a href="https://colab.research.google.com/drive/12Vi9zID-M3fpKpKiaqDBvkk98ElkRPWy?usp=sharing">notebook</a> , <a href="https://deepnote.com/workspace/cognee-382213d0-0444-4c89-8265-13770e333c02/project/cognee-demo-78ffacb9-5832-4611-bb1a-560386068b30/notebook/Notebook-1-75b24cda566d4c24ab348f7150792601?utm_source=share-modal&utm_medium=product-shared-content&utm_campaign=notebook&utm_content=78ffacb9-5832-4611-bb1a-560386068b30">Deepnote notebook</a> or <a href="https://github.com/topoteretes/cognee/tree/main/cognee-starter-kit">starter repo</a>

You can use Cognee in two ways:

## About cognee
1. [Self-host Cognee Open Source](https://docs.cognee.ai/getting-started/installation), which stores all data locally by default.
2. [Connect to Cognee Cloud](https://platform.cognee.ai/), and get the same OSS stack on managed infrastructure for easier development and productionization.

cognee works locally and stores your data on your device.
Our hosted solution is just our deployment of OSS cognee on Modal, with the goal of making development and productionization easier.
### Cognee Open Source (self-hosted):

Self-hosted package:
- Interconnects any type of data — including past conversations, files, images, and audio transcriptions
- Replaces traditional RAG systems with a unified memory layer built on graphs and vectors
- Reduces developer effort and infrastructure cost while improving quality and precision
- Provides Pythonic data pipelines for ingestion from 30+ data sources
- Offers high customizability through user-defined tasks, modular pipelines, and built-in search endpoints

- Interconnects any kind of documents: past conversations, files, images, and audio transcriptions
- Replaces RAG systems with a memory layer based on graphs and vectors
- Reduces developer effort and cost, while increasing quality and precision
- Provides Pythonic data pipelines that manage data ingestion from 30+ data sources
- Is highly customizable with custom tasks, pipelines, and a set of built-in search endpoints
### Cognee Cloud (managed):
- Hosted web UI dashboard
- Automatic version updates
- Resource usage analytics
- GDPR compliant, enterprise-grade security

Hosted platform:
- Includes a managed UI and a [hosted solution](https://www.cognee.ai)
## Basic Usage & Feature Guide

To learn more, [check out this short, end-to-end Colab walkthrough](https://colab.research.google.com/drive/12Vi9zID-M3fpKpKiaqDBvkk98ElkRPWy?usp=sharing) of Cognee's core features.

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12Vi9zID-M3fpKpKiaqDBvkk98ElkRPWy?usp=sharing)

## Self-Hosted (Open Source)
## Quickstart

Let’s try Cognee in just a few lines of code. For detailed setup and configuration, see the [Cognee Docs](https://docs.cognee.ai/getting-started/installation#environment-configuration).

### 📦 Installation
### Prerequisites

You can install Cognee using either **pip**, **poetry**, **uv** or any other python package manager..
- Python 3.10 to 3.13

Cognee supports Python 3.10 to 3.12
### Step 1: Install Cognee

#### With uv
You can install Cognee with **pip**, **poetry**, **uv**, or your preferred Python package manager.

```bash
uv pip install cognee
```

Detailed instructions can be found in our [docs](https://docs.cognee.ai/getting-started/installation#environment-configuration)

### 💻 Basic Usage

#### Setup

```
### Step 2: Configure the LLM
```python
import os
os.environ["LLM_API_KEY"] = "YOUR OPENAI_API_KEY"

```
Alternatively, create a `.env` file using our [template](https://github.com/topoteretes/cognee/blob/main/.env.template).

You can also set the variables by creating .env file, using our <a href="https://github.com/topoteretes/cognee/blob/main/.env.template">template.</a>
To use different LLM providers, for more info check out our <a href="https://docs.cognee.ai/setup-configuration/llm-providers">documentation</a>


#### Simple example
To integrate other LLM providers, see our [LLM Provider Documentation](https://docs.cognee.ai/setup-configuration/llm-providers).

### Step 3: Run the Pipeline

Cognee will take your documents, generate a knowledge graph from them and then query the graph based on combined relationships.

##### Python

This script will run the default pipeline:
Now, run a minimal pipeline:

```python
import cognee
Expand All @@ -147,7 +139,7 @@ async def main():
await cognee.memify()

# Query the knowledge graph
results = await cognee.search("What does cognee do?")
results = await cognee.search("What does Cognee do?")

# Display the results
for result in results:
Expand All @@ -158,69 +150,61 @@ if __name__ == '__main__':
asyncio.run(main())

```
Example output:
```
Cognee turns documents into AI memory.

As you can see, the output is generated from the document we previously stored in Cognee:

```bash
Cognee turns documents into AI memory.
```
##### Via CLI

Let's get the basics covered
### Use the Cognee CLI

```
As an alternative, you can get started with these essential commands:

```bash
cognee-cli add "Cognee turns documents into AI memory."

cognee-cli cognify

cognee-cli search "What does cognee do?"
cognee-cli search "What does Cognee do?"
cognee-cli delete --all

```
or run
```

To open the local UI, run:
```bash
cognee-cli -ui
```

## Demos & Examples

</div>


### Hosted Platform

Get up and running in minutes with automatic updates, analytics, and enterprise security.

1. Sign up on [cogwit](https://www.cognee.ai)
2. Add your API key to local UI and sync your data to Cogwit




## Demos
See Cognee in action:

1. Cogwit Beta demo:
### Persistent Agent Memory

[Cogwit Beta](https://github.com/user-attachments/assets/fa520cd2-2913-4246-a444-902ea5242cb0)
[Cognee Memory for LangGraph Agents](https://github.com/user-attachments/assets/e113b628-7212-4a2b-b288-0be39a93a1c3)

2. Simple GraphRAG demo
### Simple GraphRAG

[Simple GraphRAG demo](https://github.com/user-attachments/assets/d80b0776-4eb9-4b8e-aa22-3691e2d44b8f)
[Watch Demo](https://github.com/user-attachments/assets/f2186b2e-305a-42b0-9c2d-9f4473f15df8)

3. cognee with Ollama
### Cognee with Ollama

[cognee with local models](https://github.com/user-attachments/assets/8621d3e8-ecb8-4860-afb2-5594f2ee17db)
[Watch Demo](https://github.com/user-attachments/assets/39672858-f774-4136-b957-1e2de67b8981)


## Contributing
Your contributions are at the core of making this a true open source project. Any contributions you make are **greatly appreciated**. See [`CONTRIBUTING.md`](CONTRIBUTING.md) for more information.
## Community & Support

### Contributing
We welcome contributions from the community! Your input helps make Cognee better for everyone. See [`CONTRIBUTING.md`](CONTRIBUTING.md) to get started.

## Code of Conduct
### Code of Conduct

We are committed to making open source an enjoyable and respectful experience for our community. See <a href="https://github.com/topoteretes/cognee/blob/main/CODE_OF_CONDUCT.md"><code>CODE_OF_CONDUCT</code></a> for more information.
We're committed to fostering an inclusive and respectful community. Read our [Code of Conduct](https://github.com/topoteretes/cognee/blob/main/CODE_OF_CONDUCT.md) for guidelines.

## Citation
## Research & Citation

We now have a paper you can cite:
We recently published a research paper on optimizing knowledge graphs for LLM reasoning:

```bibtex
@misc{markovic2025optimizinginterfaceknowledgegraphs,
Expand Down
10 changes: 8 additions & 2 deletions cognee-mcp/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -445,16 +445,22 @@ The MCP server exposes its functionality through tools. Call them from any MCP c

- **cognify**: Turns your data into a structured knowledge graph and stores it in memory

- **cognee_add_developer_rules**: Ingest core developer rule files into memory

- **codify**: Analyse a code repository, build a code graph, stores it in memory

- **search**: Query memory – supports GRAPH_COMPLETION, RAG_COMPLETION, CODE, CHUNKS
- **delete**: Delete specific data from a dataset (supports soft/hard deletion modes)

- **get_developer_rules**: Retrieve all developer rules that were generated based on previous interactions

- **list_data**: List all datasets and their data items with IDs for deletion operations

- **delete**: Delete specific data from a dataset (supports soft/hard deletion modes)
- **save_interaction**: Logs user-agent interactions and query-answer pairs

- **prune**: Reset cognee for a fresh start (removes all data)

- **search**: Query memory – supports GRAPH_COMPLETION, RAG_COMPLETION, CODE, CHUNKS, SUMMARIES, CYPHER, and FEELING_LUCKY

- **cognify_status / codify_status**: Track pipeline progress

**Data Management Examples:**
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,10 @@ async def _get_embedding(self, prompt: str) -> List[float]:
self.endpoint, json=payload, headers=headers, timeout=60.0
) as response:
data = await response.json()
return data["embeddings"][0]
if "embeddings" in data:
return data["embeddings"][0]
else:
return data["data"][0]["embedding"]

def get_vector_size(self) -> int:
"""
Expand Down
Loading
Loading