Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Update README URLs based on HTTP redirects
  • Loading branch information
ReadmeCritic committed May 19, 2016
commit 563088b49c7e1625a60670ce6ec39e98cf44a95c
36 changes: 18 additions & 18 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@
- [Alex Minnaar's Blog](http://alexminnaar.com/) - A blog about Machine Learning and Software Engineering
- [Statistically Significant](http://andland.github.io/) - Andrew Landgraf's Data Science Blog
- [Simply Statistics](http://simplystatistics.org/) - A blog by three biostatistics professors
- [Yanir Seroussi's Blog](http://yanirseroussi.com/) - A blog about Data Science and beyond
- [Yanir Seroussi's Blog](https://yanirseroussi.com/) - A blog about Data Science and beyond
- [fastML](http://fastml.com/) - Machine learning made easy
- [Trevor Stephens Blog](http://trevorstephens.com/) - Trevor Stephens Personal Page
- [no free hunch | kaggle](http://blog.kaggle.com/) - The Kaggle Blog about all things Data Science
Expand All @@ -140,7 +140,7 @@

<a name="kaggle" />
##Kaggle Competitions WriteUp
- [How to almost win Kaggle Competitions](http://yanirseroussi.com/2014/08/24/how-to-almost-win-kaggle-competitions/)
- [How to almost win Kaggle Competitions](https://yanirseroussi.com/2014/08/24/how-to-almost-win-kaggle-competitions/)
- [Convolution Neural Networks for EEG detection](http://blog.kaggle.com/2015/10/05/grasp-and-lift-eeg-detection-winners-interview-3rd-place-team-hedj/)
- [Facebook Recruiting III Explained](http://alexminnaar.com/tag/kaggle-competitions.html)
- [Predicting CTR with Online ML](http://mlwave.com/predicting-click-through-rates-with-online-machine-learning/)
Expand Down Expand Up @@ -169,10 +169,10 @@
- [Applying and Interpreting Linear Regression](http://www.dataschool.io/applying-and-interpreting-linear-regression/)
- [What does having constant variance in a linear regression model mean?](http://stats.stackexchange.com/questions/52089/what-does-having-constant-variance-in-a-linear-regression-model-mean/52107?stw=2#52107)
- [Difference between linear regression on y with x and x with y](http://stats.stackexchange.com/questions/22718/what-is-the-difference-between-linear-regression-on-y-with-x-and-x-with-y?lq=1)
- [Is linear regression valid when the dependant variable is not normally distributed?](http://www.researchgate.net/post/Is_linear_regression_valid_when_the_outcome_dependant_variable_not_normally_distributed)
- [Is linear regression valid when the dependant variable is not normally distributed?](https://www.researchgate.net/post/Is_linear_regression_valid_when_the_outcome_dependant_variable_not_normally_distributed)
- Multicollinearity and VIF
- [Dummy Variable Trap | Multicollinearity](https://en.wikipedia.org/wiki/Multicollinearity)
- [Dealing with multicollinearity using VIFs](http://jonlefcheck.net/2012/12/28/dealing-with-multicollinearity-using-variance-inflation-factors/)
- [Dealing with multicollinearity using VIFs](https://jonlefcheck.net/2012/12/28/dealing-with-multicollinearity-using-variance-inflation-factors/)

- [Residual Analysis](#residuals-)
- [Interpreting plot.lm() in R](http://stats.stackexchange.com/questions/58141/interpreting-plot-lm)
Expand Down Expand Up @@ -235,8 +235,8 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
- [A curated list of awesome Deep Learning tutorials, projects and communities](https://github.com/ChristosChristofidis/awesome-deep-learning)
- [Lots of Deep Learning Resources](http://deeplearning4j.org/documentation.html)
- [Interesting Deep Learning and NLP Projects (Stanford)](http://cs224d.stanford.edu/reports.html), [Website](http://cs224d.stanford.edu/)
- [Core Concepts of Deep Learning](http://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/)
- [Understanding Natural Language with Deep Neural Networks Using Torch](http://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/)
- [Core Concepts of Deep Learning](https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/)
- [Understanding Natural Language with Deep Neural Networks Using Torch](https://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/)
- [Stanford Deep Learning Tutorial](http://ufldl.stanford.edu/tutorial/)
- [Deep Learning FAQs on Quora](https://www.quora.com/topic/Deep-Learning/faq)
- [Google+ Deep Learning Page](https://plus.google.com/communities/112866381580457264725)
Expand All @@ -252,7 +252,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
- [Awesome Deep Learning Reading List](http://deeplearning.net/reading-list/)
- [Deep Learning Comprehensive Website](http://deeplearning.net/), [Software](http://deeplearning.net/software_links/)
- [deeplearning Tutorials](http://deeplearning4j.org/)
- [AWESOME! Deep Learning Tutorial](http://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks)
- [AWESOME! Deep Learning Tutorial](https://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks)
- [Deep Learning Basics](http://alexminnaar.com/deep-learning-basics-neural-networks-backpropagation-and-stochastic-gradient-descent.html)
- [Stanford Tutorials](http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/)
- [Train, Validation & Test in Artificial Neural Networks](http://stackoverflow.com/questions/2976452/whats-is-the-difference-between-train-validation-and-test-set-in-neural-networ)
Expand All @@ -262,8 +262,8 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
- [Neural Networks and Deep Learning Online Book](http://neuralnetworksanddeeplearning.com/)

- Neural Machine Translation
- [Introduction to Neural Machine Translation with GPUs (part 1)](http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-with-gpus/), [Part 2](http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/), [Part 3](http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
- [Deep Speech: Accurate Speech Recognition with GPU-Accelerated Deep Learning](http://devblogs.nvidia.com/parallelforall/deep-speech-accurate-speech-recognition-gpu-accelerated-deep-learning/)
- [Introduction to Neural Machine Translation with GPUs (part 1)](https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-with-gpus/), [Part 2](https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/), [Part 3](https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
- [Deep Speech: Accurate Speech Recognition with GPU-Accelerated Deep Learning](https://devblogs.nvidia.com/parallelforall/deep-speech-accurate-speech-recognition-gpu-accelerated-deep-learning/)

<a name="frame" />
- Deep Learning Frameworks
Expand All @@ -284,7 +284,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
- [RBM using Theano](http://deeplearning.net/tutorial/rbm.html#rbm)
- [DBNs using Theano](http://deeplearning.net/tutorial/DBN.html#dbn)
- [All Codes](https://github.com/lisa-lab/DeepLearningTutorials)
- [Deep Learning Implementation Tutorials - Keras and Lasagne](http://github.com/vict0rsch/deep_learning/)
- [Deep Learning Implementation Tutorials - Keras and Lasagne](https://github.com/vict0rsch/deep_learning/)

- [Torch](http://torch.ch/)
- [Torch ML Tutorial](http://code.madbits.com/wiki/doku.php), [Code](https://github.com/torch/tutorials)
Expand All @@ -297,7 +297,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
- [Understanding Natural Language with Deep Neural Networks Using Torch](http://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/)

- Caffe
- [Deep Learning for Computer Vision with Caffe and cuDNN](http://devblogs.nvidia.com/parallelforall/deep-learning-computer-vision-caffe-cudnn/)
- [Deep Learning for Computer Vision with Caffe and cuDNN](https://devblogs.nvidia.com/parallelforall/deep-learning-computer-vision-caffe-cudnn/)

- TensorFlow
- [Website](http://tensorflow.org/)
Expand Down Expand Up @@ -331,7 +331,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
- [An application of RNN](http://hackaday.com/2015/10/15/73-computer-scientists-created-a-neural-net-and-you-wont-believe-what-happened-next/)
- [Optimizing RNN Performance](http://svail.github.io/)
- [Simple RNN](http://outlace.com/Simple-Recurrent-Neural-Network/)
- [Auto-Generating Clickbait with RNN](http://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/)
- [Auto-Generating Clickbait with RNN](https://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/)
- [Sequence Learning using RNN (Slides)](http://www.slideshare.net/indicods/general-sequence-learning-with-recurrent-neural-networks-for-next-ml)
- [Machine Translation using RNN (Paper)](http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf)
- [Music generation using RNNs (Keras)](https://github.com/MattVitelli/GRUV)
Expand Down Expand Up @@ -408,15 +408,15 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
- [Original LDA Paper](https://www.cs.princeton.edu/~blei/papers/BleiNgJordan2003.pdf)
- [alpha and beta in LDA](http://datascience.stackexchange.com/questions/199/what-does-the-alpha-and-beta-hyperparameters-contribute-to-in-latent-dirichlet-a)
- [Intuitive explanation of the Dirichlet distribution](https://www.quora.com/What-is-an-intuitive-explanation-of-the-Dirichlet-distribution)
- [Topic modeling made just simple enough](http://tedunderwood.com/2012/04/07/topic-modeling-made-just-simple-enough/)
- [Topic modeling made just simple enough](https://tedunderwood.com/2012/04/07/topic-modeling-made-just-simple-enough/)
- [Online LDA](http://alexminnaar.com/online-latent-dirichlet-allocation-the-best-option-for-topic-modeling-with-large-data-sets.html), [Online LDA with Spark](http://alexminnaar.com/distributed-online-latent-dirichlet-allocation-with-apache-spark.html)
- [LDA in Scala](http://alexminnaar.com/latent-dirichlet-allocation-in-scala-part-i-the-theory.html), [Part 2](http://alexminnaar.com/latent-dirichlet-allocation-in-scala-part-ii-the-code.html)
- [Segmentation of Twitter Timelines via Topic Modeling](http://alexperrier.github.io/jekyll/update/2015/09/16/segmentation_twitter_timelines_lda_vs_lsa.html)
- [Topic Modeling of Twitter Followers](http://alexperrier.github.io/jekyll/update/2015/09/04/topic-modeling-of-twitter-followers.html)

<a name="word2vec" />
- word2vec
- [Google word2vec](https://code.google.com/p/word2vec/)
- [Google word2vec](https://code.google.com/archive/p/word2vec)
- [Bag of Words Model Wiki](https://en.wikipedia.org/wiki/Bag-of-words_model)
- [A closer look at Skip Gram Modeling](http://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf)
- [Skip Gram Model Tutorial](http://alexminnaar.com/word2vec-tutorial-part-i-the-skip-gram-model.html), [CBoW Model](http://alexminnaar.com/word2vec-tutorial-part-ii-the-continuous-bag-of-words-model.html)
Expand Down Expand Up @@ -492,7 +492,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
- [What is entropy and information gain in the context of building decision trees?](http://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain)
- [Slides Related to Decision Trees](http://www.slideshare.net/pierluca.lanzi/machine-learning-and-data-mining-11-decision-trees)
- [How do decision tree learning algorithms deal with missing values?](http://stats.stackexchange.com/questions/96025/how-do-decision-tree-learning-algorithms-deal-with-missing-values-under-the-hoo)
- [Using Surrogates to Improve Datasets with Missing Values](http://www.salford-systems.com/videos/tutorials/tips-and-tricks/using-surrogates-to-improve-datasets-with-missing-values)
- [Using Surrogates to Improve Datasets with Missing Values](https://www.salford-systems.com/videos/tutorials/tips-and-tricks/using-surrogates-to-improve-datasets-with-missing-values)
- [Good Article](https://www.mindtools.com/dectree.html)
- [Are decision trees almost always binary trees?](http://stats.stackexchange.com/questions/12187/are-decision-trees-almost-always-binary-trees)
- [Pruning Decision Trees](https://en.wikipedia.org/wiki/Pruning_(decision_trees)), [Grafting of Decision Trees](https://en.wikipedia.org/wiki/Grafting_(decision_trees))
Expand Down Expand Up @@ -530,7 +530,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
- [Measures of variable importance in random forests](http://stats.stackexchange.com/questions/12605/measures-of-variable-importance-in-random-forests)
- [Compare R-squared from two different Random Forest models](http://stats.stackexchange.com/questions/13869/compare-r-squared-from-two-different-random-forest-models)
- [OOB Estimate Explained | RF vs LDA](https://stat.ethz.ch/education/semesters/ss2012/ams/slides/v10.2.pdf)
- [Evaluating Random Forests for Survival Analysis Using Prediction Error Curve](http://www.jstatsoft.org/article/view/v050i11)
- [Evaluating Random Forests for Survival Analysis Using Prediction Error Curve](https://www.jstatsoft.org/index.php/jss/article/view/v050i11)
- [Why doesn't Random Forest handle missing values in predictors?](http://stats.stackexchange.com/questions/98953/why-doesnt-random-forest-handle-missing-values-in-predictors)
- [How to build random forests in R with missing (NA) values?](http://stackoverflow.com/questions/8370455/how-to-build-random-forests-in-r-with-missing-na-values)
- [FAQs about Random Forest](http://stats.stackexchange.com/questions/tagged/random-forest), [More FAQs](http://stackoverflow.com/questions/tagged/random-forest)
Expand Down Expand Up @@ -580,7 +580,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
##Stacking Models
- [Stacking, Blending and Stacked Generalization](http://www.chioka.in/stacking-blending-and-stacked-generalization/)
- [Stacked Generalization (Stacking)](http://machine-learning.martinsewell.com/ensembles/stacking/)
- [Stacked Generalization: when does it work?](http://www.ijcai.org/Past%20Proceedings/IJCAI-97-VOL2/PDF/011.pdf)
- [Stacked Generalization: when does it work?](http://www.ijcai.org/Proceedings/97-2/011.pdf)
- [Stacked Generalization Paper](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.1533&rep=rep1&type=pdf)

<a name="vc" />
Expand All @@ -599,7 +599,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
- [Should all Machine Learning be Bayesian?](http://videolectures.net/bark08_ghahramani_samlbb/)
- [Tutorial on Bayesian Optimisation for Machine Learning](http://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf)
- [Bayesian Reasoning and Deep Learning](http://blog.shakirm.com/2015/10/bayesian-reasoning-and-deep-learning/), [Slides](http://blog.shakirm.com/wp-content/uploads/2015/10/Bayes_Deep.pdf)
- [Bayesian Statistics Made Simple](http://greenteapress.com/thinkbayes/)
- [Bayesian Statistics Made Simple](http://greenteapress.com/wp/think-bayes/)
- [Kalman & Bayesian Filters in Python](https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python)
- [Markov Chain Wikipedia Page](https://en.wikipedia.org/wiki/Markov_chain)

Expand Down