Skip to content

[rollout, vllm] feat: support blockwise FP8 rollout for vLLM v0.11 MoE RL#4222

Merged
wuxibin89 merged 2 commits intoverl-project:mainfrom
jQizhang:feat/moe-fp8-rollout-vllm-11
Nov 21, 2025
Merged

[rollout, vllm] feat: support blockwise FP8 rollout for vLLM v0.11 MoE RL#4222
wuxibin89 merged 2 commits intoverl-project:mainfrom
jQizhang:feat/moe-fp8-rollout-vllm-11

Conversation

@jQizhang
Copy link
Contributor

What does this PR do?

This PR enables support for blockwise FP8 rollout for MoE models using vLLM v0.11.0.

Relationship to previous work:
This is a follow-up to #3519. Please refer to that PR for the full support matrix, detailed usage instructions, experimental results, and other related context.

Implementation Details:
To support FP8 MoE RL with vLLM v0.11.0, this PR applies a monkey patch to the vLLM MoE model method:
vllm.model_executor.layers.quantization.fp8.Fp8MoEMethod.process_weights_after_loading.

This modification allows the system to correctly handle model weight loading after quantization.

Checklist Before Starting

  • Search for similar PRs. Paste at least one query link here: [rollout, vllm] feat: support blockwise fp8 rollout #3519
  • Format the PR title as [{modules}] {type}: {description} (This will be checked by the CI)
    • {modules} include fsdp, megatron, sglang, vllm, rollout, trainer, ci, training_utils, recipe, hardware, deployment, ray, worker, single_controller, misc, perf, model, algo, env, tool, ckpt, doc, data
    • If this PR involves multiple modules, separate them with , like [megatron, fsdp, doc]
    • {type} is in feat, fix, refactor, chore, test
    • If this PR breaks any API (CLI arguments, config, function signature, etc.), add [BREAKING] to the beginning of the title.
    • Example: [BREAKING][fsdp, megatron] feat: dynamic batching

Test

For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc.

API and Usage Example

Demonstrate how the API changes if any, and provide usage example(s) if possible.

# Add code snippet or script demonstrating how to use this

Design & Code Changes

Demonstrate the high-level design if this PR is complex, and list the specific changes.

Checklist Before Submitting

Important

Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review.

@CLAassistant
Copy link

CLAassistant commented Nov 21, 2025

CLA assistant check
All committers have signed the CLA.

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code Review

This pull request adds support for blockwise FP8 rollout for MoE models with vLLM v0.11.0 by introducing a new monkey-patch function and conditionally applying it based on the vLLM version. The changes are logical, but I have two suggestions to improve code quality and correctness. First, there is some duplicated code in the new process_weights_after_loading_moe_for_vllm11 function that can be refactored into a helper function to improve maintainability. Second, the vLLM version check uses string comparison, which is not robust and can lead to incorrect behavior with future vLLM versions; I've suggested using packaging.version for a more reliable comparison.

Comment on lines +428 to +453
if self.allow_deep_gemm and not is_deep_gemm_e8m0_used():
if expert_weight_is_col_major(layer.w13_weight_scale_inv):
layer.w13_weight_scale_inv = get_col_major_tma_aligned_tensor(layer.w13_weight_scale_inv)
if expert_weight_is_col_major(layer.w2_weight_scale_inv):
layer.w2_weight_scale_inv = get_col_major_tma_aligned_tensor(layer.w2_weight_scale_inv)

if is_deep_gemm_e8m0_used():
assert layer.weight_block_size is not None
# Re-quantise the expert weights so their scales are UE8M0.
block_sz = tuple(layer.weight_block_size)
requant_weight_ue8m0_inplace(
layer.w13_weight.data,
layer.w13_weight_scale_inv.data,
block_sz,
)
requant_weight_ue8m0_inplace(
layer.w2_weight.data,
layer.w2_weight_scale_inv.data,
block_sz,
)

# Ensure column-major TMA alignment expected by DeepGEMM.
if expert_weight_is_col_major(layer.w13_weight_scale_inv):
layer.w13_weight_scale_inv = get_col_major_tma_aligned_tensor(layer.w13_weight_scale_inv)
if expert_weight_is_col_major(layer.w2_weight_scale_inv):
layer.w2_weight_scale_inv = get_col_major_tma_aligned_tensor(layer.w2_weight_scale_inv)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

high

There's duplicated code for aligning DeepGEMM scales. This logic appears in two separate if blocks. To improve maintainability and reduce redundancy, you can extract this logic into a nested helper function.

    def _align_scales(l):
        if expert_weight_is_col_major(l.w13_weight_scale_inv):
            l.w13_weight_scale_inv = get_col_major_tma_aligned_tensor(l.w13_weight_scale_inv)
        if expert_weight_is_col_major(l.w2_weight_scale_inv):
            l.w2_weight_scale_inv = get_col_major_tma_aligned_tensor(l.w2_weight_scale_inv)

    if self.allow_deep_gemm and not is_deep_gemm_e8m0_used():
        _align_scales(layer)

    if is_deep_gemm_e8m0_used():
        assert layer.weight_block_size is not None
        # Re-quantise the expert weights so their scales are UE8M0.
        block_sz = tuple(layer.weight_block_size)
        requant_weight_ue8m0_inplace(
            layer.w13_weight.data,
            layer.w13_weight_scale_inv.data,
            block_sz,
        )
        requant_weight_ue8m0_inplace(
            layer.w2_weight.data,
            layer.w2_weight_scale_inv.data,
            block_sz,
        )

        # Ensure column-major TMA alignment expected by DeepGEMM.
        _align_scales(layer)

patcher2 = patch(
func2_path,
process_weights_after_loading_moe_for_vllm11
if vllm.__version__ >= "0.11.0"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

high

Comparing version strings directly using operators like >= can lead to incorrect results for some versioning schemes (e.g., '0.9.0' is lexicographically greater than '0.11.0'). For robust version comparison, it's recommended to use a dedicated library like packaging.version. This will prevent potential bugs if vllm releases versions like 0.12.0 or 1.0.0. Note that a similar issue exists on line 462 for patcher1.

Suggested change
if vllm.__version__ >= "0.11.0"
if __import__("packaging").version.parse(vllm.__version__) >= __import__("packaging").version.parse("0.11.0")

@wuxibin89 wuxibin89 requested a review from ISEEKYAN November 21, 2025 06:33
@wuxibin89
Copy link
Collaborator

cc @Agoniii

@wuxibin89
Copy link
Collaborator

@jQizhang Can we avoid this patch by bump vllm image to 0.11.1?

@jQizhang
Copy link
Contributor Author

@jQizhang Can we avoid this patch by bump vllm image to 0.11.1?

@wuxibin89 I haven't tested with vLLM 0.11.1 yet. However, since vLLM 0.11.1 also removes the weight_loader attribute in process_weights_after_loading, the issue with quantized weight updates will likely persist. Therefore, I think the patch may still be needed for vLLM 0.11.1.

@wuxibin89 wuxibin89 merged commit 417e139 into verl-project:main Nov 21, 2025
72 of 74 checks passed
Di-viner pushed a commit to Di-viner/verl that referenced this pull request Nov 30, 2025
…E RL (verl-project#4222)

### What does this PR do?

This PR enables support for **blockwise FP8 rollout** for **MoE** models
using **vLLM v0.11.0**.

**Relationship to previous work:**
This is a follow-up to verl-project#3519. Please refer to that PR for the full
support matrix, detailed usage instructions, experimental results, and
other related context.

**Implementation Details:**
To support FP8 MoE RL with vLLM v0.11.0, this PR applies a monkey patch
to the vLLM MoE model method:

`vllm.model_executor.layers.quantization.fp8.Fp8MoEMethod.process_weights_after_loading`.

This modification allows the system to correctly handle model weight
loading after quantization.

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: verl-project#3519
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
TimurTaepov pushed a commit to giorgossideris/verl that referenced this pull request Dec 20, 2025
…E RL (verl-project#4222)

### What does this PR do?

This PR enables support for **blockwise FP8 rollout** for **MoE** models
using **vLLM v0.11.0**.

**Relationship to previous work:**
This is a follow-up to verl-project#3519. Please refer to that PR for the full
support matrix, detailed usage instructions, experimental results, and
other related context.

**Implementation Details:**
To support FP8 MoE RL with vLLM v0.11.0, this PR applies a monkey patch
to the vLLM MoE model method:

`vllm.model_executor.layers.quantization.fp8.Fp8MoEMethod.process_weights_after_loading`.

This modification allows the system to correctly handle model weight
loading after quantization.

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: verl-project#3519
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
vyomakesh0728 added a commit to vyomakesh0728/verl that referenced this pull request Jan 22, 2026
…E RL (verl-project#4222)

### What does this PR do?

This PR enables support for **blockwise FP8 rollout** for **MoE** models
using **vLLM v0.11.0**.

**Relationship to previous work:**
This is a follow-up to verl-project#3519. Please refer to that PR for the full
support matrix, detailed usage instructions, experimental results, and
other related context.

**Implementation Details:**
To support FP8 MoE RL with vLLM v0.11.0, this PR applies a monkey patch
to the vLLM MoE model method:

`vllm.model_executor.layers.quantization.fp8.Fp8MoEMethod.process_weights_after_loading`.

This modification allows the system to correctly handle model weight
loading after quantization.

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: verl-project#3519
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants