-
Notifications
You must be signed in to change notification settings - Fork 2
Bump protobuf-java from 3.21.1 to 3.21.7 in /connect #32
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Bump protobuf-java from 3.21.1 to 3.21.7 in /connect #32
Conversation
Bumps [protobuf-java](https://github.com/protocolbuffers/protobuf) from 3.21.1 to 3.21.7. - [Release notes](https://github.com/protocolbuffers/protobuf/releases) - [Changelog](https://github.com/protocolbuffers/protobuf/blob/main/generate_changelog.py) - [Commits](protocolbuffers/protobuf@v3.21.1...v3.21.7) --- updated-dependencies: - dependency-name: com.google.protobuf:protobuf-java dependency-type: direct:production ... Signed-off-by: dependabot[bot] <[email protected]>
|
Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting |
11 similar comments
|
Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting |
|
Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting |
|
Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting |
|
Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting |
|
Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting |
|
Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting |
|
Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting |
|
Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting |
|
Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting |
|
Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting |
|
Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting |
|
OK, I won't notify you again about this release, but will get in touch when a new version is available. If you'd rather skip all updates until the next major or minor version, let me know by commenting If you change your mind, just re-open this PR and I'll resolve any conflicts on it. |
### What changes were proposed in this pull request? This PR proposes to add `doCanonicalize` function for DataSourceV2ScanRelation. The implementation is similar to [the one in BatchScanExec](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/BatchScanExec.scala#L150), as well as the [the one in LogicalRelation](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/LogicalRelation.scala#L52). ### Why are the changes needed? Query optimization rules such as MergeScalarSubqueries check if two plans are identical by [comparing their canonicalized form](https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/MergeScalarSubqueries.scala#L219). For DSv2, for physical plan, the canonicalization goes down in the child hierarchy to the BatchScanExec, which [has a doCanonicalize function](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/BatchScanExec.scala#L150); for logical plan, the canonicalization goes down to the DataSourceV2ScanRelation, which, however, does not have a doCanonicalize function. As a result, two logical plans who are semantically identical are not identified. Moreover, for reference, [DSv1 LogicalRelation](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/LogicalRelation.scala#L52) also has `doCanonicalize()`. ### Does this PR introduce _any_ user-facing change? No ### How was this patch tested? A new unit test is added to show that `MergeScalarSubqueries` is working for DataSourceV2ScanRelation. For a query ```sql select (select max(i) from df) as max_i, (select min(i) from df) as min_i ``` Before introducing the canonicalization, the plan is ``` == Parsed Logical Plan == 'Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- 'Project [unresolvedalias('max('i))] : : +- 'UnresolvedRelation [df], [], false : +- 'Project [unresolvedalias('min('i))] : +- 'UnresolvedRelation [df], [], false +- OneRowRelation == Analyzed Logical Plan == max_i: int, min_i: int Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- Aggregate [max(i#0) AS max(i)#7] : : +- SubqueryAlias df : : +- View (`df`, [i#0, j#1]) : : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 : +- Aggregate [min(i#10) AS min(i)#9] : +- SubqueryAlias df : +- View (`df`, [i#10, j#11]) : +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 +- OneRowRelation == Optimized Logical Plan == Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- Aggregate [max(i#0) AS max(i)#7] : : +- Project [i#0] : : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 : +- Aggregate [min(i#10) AS min(i)#9] : +- Project [i#10] : +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 +- OneRowRelation == Physical Plan == AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 0 +- *(1) Project [Subquery subquery#2, [id=#32] AS max_i#3, Subquery subquery#4, [id=#33] AS min_i#5] : :- Subquery subquery#2, [id=#32] : : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=58] +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14]) +- *(1) Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=19] +- HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14]) +- Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] : +- Subquery subquery#4, [id=#33] : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=63] +- *(1) HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15]) +- *(1) Project [i#10] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=30] +- HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15]) +- Project [i#10] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- *(1) Scan OneRowRelation[] +- == Initial Plan == Project [Subquery subquery#2, [id=#32] AS max_i#3, Subquery subquery#4, [id=#33] AS min_i#5] : :- Subquery subquery#2, [id=#32] : : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=58] +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14]) +- *(1) Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=19] +- HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14]) +- Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] : +- Subquery subquery#4, [id=#33] : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=63] +- *(1) HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15]) +- *(1) Project [i#10] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=30] +- HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15]) +- Project [i#10] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- Scan OneRowRelation[] ``` After introducing the canonicalization, the plan is as following, where you can see **ReusedSubquery** ``` == Parsed Logical Plan == 'Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- 'Project [unresolvedalias('max('i))] : : +- 'UnresolvedRelation [df], [], false : +- 'Project [unresolvedalias('min('i))] : +- 'UnresolvedRelation [df], [], false +- OneRowRelation == Analyzed Logical Plan == max_i: int, min_i: int Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- Aggregate [max(i#0) AS max(i)#7] : : +- SubqueryAlias df : : +- View (`df`, [i#0, j#1]) : : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 : +- Aggregate [min(i#10) AS min(i)#9] : +- SubqueryAlias df : +- View (`df`, [i#10, j#11]) : +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 +- OneRowRelation == Optimized Logical Plan == Project [scalar-subquery#2 [].max(i) AS max_i#3, scalar-subquery#4 [].min(i) AS min_i#5] : :- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] : : +- Aggregate [max(i#0) AS max(i)#7, min(i#0) AS min(i)#9] : : +- Project [i#0] : : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 : +- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] : +- Aggregate [max(i#0) AS max(i)#7, min(i#0) AS min(i)#9] : +- Project [i#0] : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 +- OneRowRelation == Physical Plan == AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 0 +- *(1) Project [Subquery subquery#2, [id=#40].max(i) AS max_i#3, ReusedSubquery Subquery subquery#2, [id=#40].min(i) AS min_i#5] : :- Subquery subquery#2, [id=#40] : : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] +- *(2) HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=71] +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) +- *(1) Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=22] +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) +- Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] : +- ReusedSubquery Subquery subquery#2, [id=#40] +- *(1) Scan OneRowRelation[] +- == Initial Plan == Project [Subquery subquery#2, [id=#40].max(i) AS max_i#3, Subquery subquery#4, [id=#41].min(i) AS min_i#5] : :- Subquery subquery#2, [id=#40] : : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] +- *(2) HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=71] +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) +- *(1) Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=22] +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) +- Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] : +- Subquery subquery#4, [id=#41] : +- AdaptiveSparkPlan isFinalPlan=false : +- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] : +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) : +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=37] : +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) : +- Project [i#0] : +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- Scan OneRowRelation[] ``` ### Was this patch authored or co-authored using generative AI tooling? No Closes apache#52529 from yhuang-db/scan-canonicalization. Authored-by: yhuang-db <[email protected]> Signed-off-by: Peter Toth <[email protected]>
Bumps protobuf-java from 3.21.1 to 3.21.7.
Commits
54489e9Updating changelog5fc03e1Updating version.json and repo version numbers to: 21.7a3888f5Clean up TextFormat parser (#10673)3b5301cRefactoring Java parsing (21.x) (#10665)bea6726Merge pull request #10579 from protocolbuffers/21.x-202209142140b1924e1Update version.json to: 21.7-dev929e13dMerge pull request #10572 from deannagarcia/21.xde7597eUpdate python/release.sh to handle delay between twine upload and pip install...480bd3bMerge pull request #10557 from protocolbuffers/21.x-202209132118aa8c73dUpdating changelogDependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting
@dependabot rebase.Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR:
@dependabot rebasewill rebase this PR@dependabot recreatewill recreate this PR, overwriting any edits that have been made to it@dependabot mergewill merge this PR after your CI passes on it@dependabot squash and mergewill squash and merge this PR after your CI passes on it@dependabot cancel mergewill cancel a previously requested merge and block automerging@dependabot reopenwill reopen this PR if it is closed@dependabot closewill close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually@dependabot ignore this major versionwill close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)@dependabot ignore this minor versionwill close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)@dependabot ignore this dependencywill close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)@dependabot use these labelswill set the current labels as the default for future PRs for this repo and language@dependabot use these reviewerswill set the current reviewers as the default for future PRs for this repo and language@dependabot use these assigneeswill set the current assignees as the default for future PRs for this repo and language@dependabot use this milestonewill set the current milestone as the default for future PRs for this repo and languageYou can disable automated security fix PRs for this repo from the Security Alerts page.