Skip to content

yetweka/discrete_sieve

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

#The Information Sieve

Recent work establishes results that allow the efficient construction of representations that are maximally informative about the data. A recent extension allows us to build maximally informative representations in an incremental way. The other advantage of this approach is that it keeps track of remainder information, so that we can enable lossy and lossless compression.

This is described here: The Information Sieve Greg Ver Steeg and Aram Galstyan, ICML 2016, http://arxiv.org/abs/1507.02284

Papers describing previous work:
Discovering Structure in High-Dimensional Data Through Correlation Explanation
Greg Ver Steeg and Aram Galstyan, NIPS 2014, http://arxiv.org/abs/1406.1222

Maximally Informative Hierarchical Representions of High-Dimensional Data
Greg Ver Steeg and Aram Galstyan, AISTATS 2015, http://arxiv.org/abs/1410.7404

###Dependencies

Sieve requires numpy and scipy. If you use OS X, I recommend installing the Scipy Superpack:
http://fonnesbeck.github.io/ScipySuperpack/

###Install

To install, download using the link on the right or clone the project by executing this command in your target directory:

git clone https://github.com/gregversteeg/sieve.git

Use git pull to get updates. The code is under heavy development. Please feel free to raise issues or request features using the github interface.

Basic Usage

Example

import corex as ce

X = np.array([[0,0,0,0,0], # A matrix with rows as samples and columns as variables.
              [0,0,0,1,1],
              [1,1,1,0,0],
              [1,1,1,1,1]], dtype=int)

s = sieve.Sieve(max_layers=2)  # Initialize. Can limit number of layers (default is automatic) and pass kwargs to CorEx
s.fit(X)

s.labels  # Each variable/column is associated with one Y_j
s.tcs  # TC(X; Y) for each latent factor
s.layers[0].corex  # Access the CorEx object 

More examples are in the paper and in the tests and paper_figures folder.

CorEx outputs

See https://github.com/gregversteeg/CorEx for more info about the CorEx module (the one included here is a simplified version.)

About

The information sieve for discrete variables.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%