forked from ZhenhuaShi/mlTSK
-
Notifications
You must be signed in to change notification settings - Fork 0
zcbgit/mlTSK
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
mlTSK toolbox: Optimize TSK fuzzy systems for regression and classification on big data
% ml: matlab, or machine learning
% big data: large-scale and large-volume
文件夹包含:
batchNormalizationBackward.m 计算BN的导数
calculateDeltaLY.m 计算回归或分类损失相对于预测标签的导数
calculateFiringLevel.m 使用隶属度函数计算规则激活度
EIASC.m 区间二型模糊降阶算法
FuzzyCMeans.m 模糊C均值聚类
fis2mat.m 将sugfis对象转换为模糊系统矩阵
mat2fis.m 将模糊系统矩阵转换为sugfis对象
mlTSK.m 主程序,TSK模糊系统优化算法(默认为CDR-FCM-RDpA,见第54行)
mlTSK.mlapp 主程序图形化界面
Musk1.mat 示例回归数据集
Musk1_result.PNG 示例回归可视化结果
Musk1C.mat 示例分类数据集
Musk1C_result.PNG 示例分类可视化结果
readme.txt 说明文档
验证环境:MATLAB 版本: 9.8.0.1323502 (R2020a)
验证步骤:打开Matlab,运行mlTSK.m,得到输出结果:
载入Musk1.mat时,得到回归结果:
train on 333 samples, tune on 71 samples, test on 72 samples, num. of features is 166.
Regression Task.
Iteration: 640, trainRMSE: 0.22, tuneRMSE: 0.38, testRMSE: 0.63.
载入Musk1C.mat时,得到分类结果:
train on 333 samples, tune on 71 samples, test on 72 samples, num. of features is 166.
Classification Task, num. of class is 2.
Iteration: 320, trainBCA: 0.97, tuneBCA: 0.98, testBCA: 0.90.
图形化界面:打开Matlab,打开mlTSKapp.mlapp并运行,得到图形化界面,点击Load Data and Run按钮载入数据,得到输出结果:
载入Musk1.mat时,得到回归结果,如图Musk1_result.png所示。
载入Musk1C.mat时,得到分类结果,如图Musk1C_result.png所示。
已实现TSK模糊系统优化算法包括但不限于(详见mlTSK.m第55行至第73行):
MBGD-RDA [1]
FCM-RDpA [2]
FCM-RDpA-UR-BNC [3]
FCM-RDpA-LN-ReLU
CDR(P)-FCM-RDpA
CFS(P)-FCM-RDpA
参考文献:
[1] D. Wu, Y. Yuan, J. Huang, and Y. Tan, “Optimize TSK fuzzy systems for regression problems: Mini-batch gradient descent with regularization, DropRule, and AdaBound (MBGD-RDA),” IEEE Trans. on Fuzzy Systems, vol. 28, no. 5, pp. 1003–1015, 2020.
[2] Z. Shi, D. Wu, C. Guo, C. Zhao, Y. Cui, and F.-Y. Wang, “FCM-RDpA: TSK fuzzy regression model construction using fuzzy c-means clustering, regularization, DropRule, and Powerball AdaBelief,” Information Sciences, vol. 574, pp. 490–504, 2021.
[3] Y. Cui, D. Wu, and J. Huang, “Optimize TSK fuzzy systems for classification problems: Mini-batch gradient descent with uniform regularization and batch normalization,” IEEE Trans. on Fuzzy Systems, vol. 28, no. 12, pp. 3065–3075, 2020.
About
Matlab toolbox: Optimize TSK fuzzy systems for regression and classification on big data
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- MATLAB 100.0%