Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions .amlignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
.ipynb_checkpoints
azureml-logs
.azureml
.git
outputs
azureml-setup
docs
3 changes: 3 additions & 0 deletions .vscode/settings.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
{
"python.pythonPath": "C:\\Users\\sgilley\\.azureml\\envs\\jan3\\python.exe"
}
15 changes: 15 additions & 0 deletions aml_config/conda_dependencies.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
# Conda environment specification. The dependencies defined in this file will
# be automatically provisioned for runs with userManagedDependencies=False.

# Details about the Conda environment file format:
# https://conda.io/docs/user-guide/tasks/manage-environments.html#create-env-file-manually

name: project_environment
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- python=3.6.2

- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-defaults
Expand Down
115 changes: 115 additions & 0 deletions aml_config/docker.runconfig
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
# The script to run.
script: train.py
# The arguments to the script file.
arguments: []
# The name of the compute target to use for this run.
target: local
# Framework to execute inside. Allowed values are "Python" , "PySpark", "CNTK", "TensorFlow", and "PyTorch".
framework: PySpark
# Communicator for the given framework. Allowed values are "None" , "ParameterServer", "OpenMpi", and "IntelMpi".
communicator: None
# Automatically prepare the run environment as part of the run itself.
autoPrepareEnvironment: true
# Maximum allowed duration for the run.
maxRunDurationSeconds:
# Number of nodes to use for running job.
nodeCount: 1
# Environment details.
environment:
# Environment variables set for the run.
environmentVariables:
EXAMPLE_ENV_VAR: EXAMPLE_VALUE
# Python details
python:
# user_managed_dependencies=True indicates that the environmentwill be user managed. False indicates that AzureML willmanage the user environment.
userManagedDependencies: false
# The python interpreter path
interpreterPath: python
# Path to the conda dependencies file to use for this run. If a project
# contains multiple programs with different sets of dependencies, it may be
# convenient to manage those environments with separate files.
condaDependenciesFile: aml_config/conda_dependencies.yml
# Docker details
docker:
# Set True to perform this run inside a Docker container.
enabled: true
# Base image used for Docker-based runs.
baseImage: mcr.microsoft.com/azureml/base:0.2.0
# Set False if necessary to work around shared volume bugs.
sharedVolumes: true
# Run with NVidia Docker extension to support GPUs.
gpuSupport: false
# Extra arguments to the Docker run command.
arguments: []
# Image registry that contains the base image.
baseImageRegistry:
# DNS name or IP address of azure container registry(ACR)
address:
# The username for ACR
username:
# The password for ACR
password:
# Spark details
spark:
# List of spark repositories.
repositories:
- https://mmlspark.azureedge.net/maven
packages:
- group: com.microsoft.ml.spark
artifact: mmlspark_2.11
version: '0.12'
precachePackages: true
# Databricks details
databricks:
# List of maven libraries.
mavenLibraries: []
# List of PyPi libraries
pypiLibraries: []
# List of RCran libraries
rcranLibraries: []
# List of JAR libraries
jarLibraries: []
# List of Egg libraries
eggLibraries: []
# History details.
history:
# Enable history tracking -- this allows status, logs, metrics, and outputs
# to be collected for a run.
outputCollection: true
# whether to take snapshots for history.
snapshotProject: true
# Spark configuration details.
spark:
configuration:
spark.app.name: Azure ML Experiment
spark.yarn.maxAppAttempts: 1
# HDI details.
hdi:
# Yarn deploy mode. Options are cluster and client.
yarnDeployMode: cluster
# Tensorflow details.
tensorflow:
# The number of worker tasks.
workerCount: 1
# The number of parameter server tasks.
parameterServerCount: 1
# Mpi details.
mpi:
# When using MPI, number of processes per node.
processCountPerNode: 1
# data reference configuration details
dataReferences: {}
# Project share datastore reference.
sourceDirectoryDataStore:
# AmlCompute details.
amlcompute:
# VM size of the Cluster to be created.Allowed values are Azure vm sizes.The list of vm sizes is available in 'https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-sizes-specs
vmSize:
# VM priority of the Cluster to be created.Allowed values are "dedicated" , "lowpriority".
vmPriority:
# A bool that indicates if the cluster has to be retained after job completion.
retainCluster: false
# Name of the cluster to be created. If not specified, runId will be used as cluster name.
name:
# Maximum number of nodes in the AmlCompute cluster to be created. Minimum number of nodes will always be set to 0.
clusterMaxNodeCount: 1
115 changes: 115 additions & 0 deletions aml_config/local.runconfig
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
# The script to run.
script: train.py
# The arguments to the script file.
arguments: []
# The name of the compute target to use for this run.
target: local
# Framework to execute inside. Allowed values are "Python" , "PySpark", "CNTK", "TensorFlow", and "PyTorch".
framework: Python
# Communicator for the given framework. Allowed values are "None" , "ParameterServer", "OpenMpi", and "IntelMpi".
communicator: None
# Automatically prepare the run environment as part of the run itself.
autoPrepareEnvironment: true
# Maximum allowed duration for the run.
maxRunDurationSeconds:
# Number of nodes to use for running job.
nodeCount: 1
# Environment details.
environment:
# Environment variables set for the run.
environmentVariables:
EXAMPLE_ENV_VAR: EXAMPLE_VALUE
# Python details
python:
# user_managed_dependencies=True indicates that the environmentwill be user managed. False indicates that AzureML willmanage the user environment.
userManagedDependencies: false
# The python interpreter path
interpreterPath: python
# Path to the conda dependencies file to use for this run. If a project
# contains multiple programs with different sets of dependencies, it may be
# convenient to manage those environments with separate files.
condaDependenciesFile: aml_config/conda_dependencies.yml
# Docker details
docker:
# Set True to perform this run inside a Docker container.
enabled: false
# Base image used for Docker-based runs.
baseImage: mcr.microsoft.com/azureml/base:0.2.0
# Set False if necessary to work around shared volume bugs.
sharedVolumes: true
# Run with NVidia Docker extension to support GPUs.
gpuSupport: false
# Extra arguments to the Docker run command.
arguments: []
# Image registry that contains the base image.
baseImageRegistry:
# DNS name or IP address of azure container registry(ACR)
address:
# The username for ACR
username:
# The password for ACR
password:
# Spark details
spark:
# List of spark repositories.
repositories:
- https://mmlspark.azureedge.net/maven
packages:
- group: com.microsoft.ml.spark
artifact: mmlspark_2.11
version: '0.12'
precachePackages: true
# Databricks details
databricks:
# List of maven libraries.
mavenLibraries: []
# List of PyPi libraries
pypiLibraries: []
# List of RCran libraries
rcranLibraries: []
# List of JAR libraries
jarLibraries: []
# List of Egg libraries
eggLibraries: []
# History details.
history:
# Enable history tracking -- this allows status, logs, metrics, and outputs
# to be collected for a run.
outputCollection: true
# whether to take snapshots for history.
snapshotProject: true
# Spark configuration details.
spark:
configuration:
spark.app.name: Azure ML Experiment
spark.yarn.maxAppAttempts: 1
# HDI details.
hdi:
# Yarn deploy mode. Options are cluster and client.
yarnDeployMode: cluster
# Tensorflow details.
tensorflow:
# The number of worker tasks.
workerCount: 1
# The number of parameter server tasks.
parameterServerCount: 1
# Mpi details.
mpi:
# When using MPI, number of processes per node.
processCountPerNode: 1
# data reference configuration details
dataReferences: {}
# Project share datastore reference.
sourceDirectoryDataStore:
# AmlCompute details.
amlcompute:
# VM size of the Cluster to be created.Allowed values are Azure vm sizes.The list of vm sizes is available in 'https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-sizes-specs
vmSize:
# VM priority of the Cluster to be created.Allowed values are "dedicated" , "lowpriority".
vmPriority:
# A bool that indicates if the cluster has to be retained after job completion.
retainCluster: false
# Name of the cluster to be created. If not specified, runId will be used as cluster name.
name:
# Maximum number of nodes in the AmlCompute cluster to be created. Minimum number of nodes will always be set to 0.
clusterMaxNodeCount: 1
1 change: 1 addition & 0 deletions aml_config/project.json
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"Id": "local-compute", "Scope": "/subscriptions/65a1016d-0f67-45d2-b838-b8f373d6d52e/resourceGroups/sheri/providers/Microsoft.MachineLearningServices/workspaces/sheritestqs3/projects/local-compute"}
Loading