Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
[SPARK-16508][SparkR] Fix warnings on undocumented/duplicated arguments by CRAN-check #14558
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Uh oh!
There was an error while loading. Please reload this page.
[SPARK-16508][SparkR] Fix warnings on undocumented/duplicated arguments by CRAN-check #14558
Changes from 1 commit
82e2f0941d9dca44115e92d136db901edbb475ee382285de720efb79719ac5f15637f7977fbbfd3a30d21e401358611bc251b1016ea8a1984b434e70ed623633a213fb87ba8f6bf20cdbc683f00fb0149d2c1d64b4047fcbde94cd38378f5a21ecc9750f880e02d0d08f4cacd4503632e5771a12e2c787237ae541c56971022230c6cb3eab3e0163b68a24d322c7660394d5989406f82585d1d991aa5325735b8bec5f1570bc37536d5233e0edfd7de72a6aaafa69edc9cfe433aafaa7315a0ddaa3d23371170e92682719File filter
Filter by extension
Conversations
Uh oh!
There was an error while loading. Please reload this page.
Jump to
Uh oh!
There was an error while loading. Please reload this page.
… for parquet reader The base class `SpecificParquetRecordReaderBase` used for vectorized parquet reader will try to get pushed-down filters from the given configuration. This pushed-down filters are used for RowGroups-level filtering. However, we don't set up the filters to push down into the configuration. In other words, the filters are not actually pushed down to do RowGroups-level filtering. This patch is to fix this and tries to set up the filters for pushing down to configuration for the reader. The benchmark that excludes the time of writing Parquet file: test("Benchmark for Parquet") { val N = 500 << 12 withParquetTable((0 until N).map(i => (101, i)), "t") { val benchmark = new Benchmark("Parquet reader", N) benchmark.addCase("reading Parquet file", 10) { iter => sql("SELECT _1 FROM t where t._1 < 100").collect() } benchmark.run() } } `withParquetTable` in default will run tests for vectorized reader non-vectorized readers. I only let it run vectorized reader. When we set the block size of parquet as 1024 to have multiple row groups. The benchmark is: Before this patch: The retrieved row groups: 8063 Java HotSpot(TM) 64-Bit Server VM 1.8.0_71-b15 on Linux 3.19.0-25-generic Intel(R) Core(TM) i7-5557U CPU 3.10GHz Parquet reader: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ reading Parquet file 825 / 1233 2.5 402.6 1.0X After this patch: The retrieved row groups: 0 Java HotSpot(TM) 64-Bit Server VM 1.8.0_71-b15 on Linux 3.19.0-25-generic Intel(R) Core(TM) i7-5557U CPU 3.10GHz Parquet reader: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ reading Parquet file 306 / 503 6.7 149.6 1.0X Next, I run the benchmark for non-pushdown case using the same benchmark code but with disabled pushdown configuration. This time the parquet block size is default value. Before this patch: Java HotSpot(TM) 64-Bit Server VM 1.8.0_71-b15 on Linux 3.19.0-25-generic Intel(R) Core(TM) i7-5557U CPU 3.10GHz Parquet reader: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ reading Parquet file 136 / 238 15.0 66.5 1.0X After this patch: Java HotSpot(TM) 64-Bit Server VM 1.8.0_71-b15 on Linux 3.19.0-25-generic Intel(R) Core(TM) i7-5557U CPU 3.10GHz Parquet reader: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ reading Parquet file 124 / 193 16.5 60.7 1.0X For non-pushdown case, from the results, I think this patch doesn't affect normal code path. I've manually output the `totalRowCount` in `SpecificParquetRecordReaderBase` to see if this patch actually filter the row-groups. When running the above benchmark: After this patch: `totalRowCount = 0` Before this patch: `totalRowCount = 1024000` Existing tests should be passed. Author: Liang-Chi Hsieh <[email protected]> Closes #13701 from viirya/vectorized-reader-push-down-filter2. (cherry picked from commit 19af298) Signed-off-by: Davies Liu <[email protected]>Uh oh!
There was an error while loading. Please reload this page.
There are no files selected for viewing