-
Notifications
You must be signed in to change notification settings - Fork 29k
[Spark-21854] Added LogisticRegressionTrainingSummary for MultinomialLogisticRegression in Python API #19185
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 1 commit
50cfafe
60579d5
1a73e6c
53ac68e
a4755d7
eb8f6b4
6529fa6
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
- Loading branch information
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -529,10 +529,9 @@ def summary(self): | |
| """ | ||
| if self.hasSummary: | ||
| java_blrt_summary = self._call_java("summary") | ||
| java_blrt_interceptVector = self._call_java("interceptVector") | ||
| java_blrt_numClasses = self._call_java("numClasses") | ||
| java_blrt_binarysummary = self._call_java("binarySummary") | ||
| if (len(java_blrt_interceptVector) == 1): | ||
| if (java_blrt_numClasses == 2): | ||
| java_blrt_binarysummary = self._call_java("binarySummary") | ||
|
||
| return BinaryLogisticRegressionTrainingSummary(java_blrt_binarysummary) | ||
| else: | ||
| return LogisticRegressionTrainingSummary(java_blrt_summary) | ||
|
|
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -1478,6 +1478,40 @@ def test_logistic_regression_summary(self): | |
| sameSummary = model.evaluate(df) | ||
| self.assertAlmostEqual(sameSummary.areaUnderROC, s.areaUnderROC) | ||
|
|
||
| def test_multiclass_logistic_regression_summary(self): | ||
| df = self.spark.createDataFrame([(1.0, 2.0, Vectors.dense(1.0)), | ||
| (0.0, 2.0, Vectors.sparse(1, [], [])), | ||
| (2.0, 2.0, Vectors.dense(2.0)), | ||
| (2.0, 2.0, Vectors.dense(1.9))], | ||
| ["label", "weight", "features"]) | ||
| lr = LogisticRegression(maxIter=5, regParam=0.01, weightCol="weight", fitIntercept=False) | ||
| model = lr.fit(df) | ||
| self.assertTrue(model.hasSummary) | ||
| s = model.summary | ||
| # test that api is callable and returns expected types | ||
| self.assertTrue(isinstance(s.predictions, DataFrame)) | ||
| self.assertEqual(s.probabilityCol, "probability") | ||
| self.assertEqual(s.labelCol, "label") | ||
| self.assertEqual(s.featuresCol, "features") | ||
| self.assertEqual(s.predictionCol, "prediction") | ||
| objHist = s.objectiveHistory | ||
| self.assertTrue(isinstance(objHist, list) and isinstance(objHist[0], float)) | ||
| self.assertGreater(s.totalIterations, 0) | ||
| self.assertTrue(isinstance(s.labels, list)) | ||
| self.assertTrue(isinstance(s.truePositiveRateByLabel, list)) | ||
| self.assertTrue(isinstance(s.falsePositiveRateByLabel, list)) | ||
| self.assertTrue(isinstance(s.precisionByLabel, list)) | ||
| self.assertTrue(isinstance(s.recallByLabel, list)) | ||
| self.assertTrue(isinstance(s.fMeasureByLabel, list)) | ||
| self.assertAlmostEqual(s.accuracy, 0.75, 2) | ||
| self.assertAlmostEqual(s.weightedTruePositiveRate, 0.75, 2) | ||
| self.assertAlmostEqual(s.weightedFalsePositiveRate, 0.25, 2) | ||
| self.assertAlmostEqual(s.weightedRecall, 0.75, 2) | ||
| self.assertAlmostEqual(s.weightedPrecision, 0.583, 2) | ||
| self.assertAlmostEqual(s.weightedFMeasure, 0.65, 2) | ||
|
||
| # test evaluation (with training dataset) produces a summary with same values | ||
| # one check is enough to verify a summary is returned, Scala version runs full test | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please add test for evaluation like: |
||
|
|
||
| def test_gaussian_mixture_summary(self): | ||
| data = [(Vectors.dense(1.0),), (Vectors.dense(5.0),), (Vectors.dense(10.0),), | ||
| (Vectors.sparse(1, [], []),)] | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Rename this to
java_lrt_summary, as it's not always binary logistic regression.