-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-3974][MLlib] Distributed Block Matrix Abstractions #3200
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 1 commit
b693209
f378e16
aa8f086
589fbb6
19c17e8
b05aabb
645afbe
49b9586
d033861
9ae85aa
ab6cde0
ba414d2
239ab4b
1e8bb2a
1a63b20
eebbdf7
f9d664b
1694c9e
140f20e
5eecd48
24ec7b8
e1d3ee8
feb32a7
a8eace2
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
- Loading branch information
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -30,13 +30,25 @@ import org.apache.spark.storage.StorageLevel | |
| * | ||
| * @param numRowBlocks Number of blocks that form the rows of the matrix. | ||
| * @param numColBlocks Number of blocks that form the columns of the matrix. | ||
| * @param suggestedNumPartitions Number of partitions to partition the rdd into. The final number | ||
| * of partitions will be set to `min(suggestedNumPartitions, | ||
| * numRowBlocks * numColBlocks)`, because setting the number of | ||
| * partitions greater than the number of sub matrices is not useful. | ||
| */ | ||
| private[mllib] class GridPartitioner( | ||
| val numRowBlocks: Int, | ||
| val numColBlocks: Int, | ||
| val numParts: Int) extends Partitioner { | ||
| suggestedNumPartitions: Int) extends Partitioner { | ||
| // Having the number of partitions greater than the number of sub matrices does not help | ||
| override val numPartitions = math.min(numParts, numRowBlocks * numColBlocks) | ||
| override val numPartitions = math.min(suggestedNumPartitions, numRowBlocks * numColBlocks) | ||
|
|
||
| val totalBlocks = numRowBlocks.toLong * numColBlocks | ||
| // Gives the number of blocks that need to be in each partition | ||
| val targetNumBlocksPerPartition = math.ceil(totalBlocks * 1.0 / numPartitions).toInt | ||
| // Number of neighboring blocks to take in each row | ||
| val numRowBlocksPerPartition = math.ceil(numRowBlocks * 1.0 / targetNumBlocksPerPartition).toInt | ||
| // Number of neighboring blocks to take in each column | ||
| val numColBlocksPerPartition = math.ceil(numColBlocks * 1.0 / targetNumBlocksPerPartition).toInt | ||
|
|
||
| /** | ||
| * Returns the index of the partition the SubMatrix belongs to. Tries to achieve block wise | ||
|
|
@@ -51,27 +63,20 @@ private[mllib] class GridPartitioner( | |
| override def getPartition(key: Any): Int = { | ||
| key match { | ||
| case (blockRowIndex: Int, blockColIndex: Int) => | ||
| getBlockId(blockRowIndex, blockColIndex) | ||
| getPartitionId(blockRowIndex, blockColIndex) | ||
| case (blockRowIndex: Int, innerIndex: Int, blockColIndex: Int) => | ||
| getBlockId(blockRowIndex, blockColIndex) | ||
| getPartitionId(blockRowIndex, blockColIndex) | ||
| case _ => | ||
| throw new IllegalArgumentException(s"Unrecognized key. key: $key") | ||
| } | ||
| } | ||
|
|
||
| /** Partitions sub-matrices as blocks with neighboring sub-matrices. */ | ||
| private def getBlockId(blockRowIndex: Int, blockColIndex: Int): Int = { | ||
| val totalBlocks = numRowBlocks * numColBlocks | ||
| // Gives the number of blocks that need to be in each partition | ||
| val partitionRatio = math.ceil(totalBlocks * 1.0 / numPartitions).toInt | ||
| // Number of neighboring blocks to take in each row | ||
| val subBlocksPerRow = math.ceil(numRowBlocks * 1.0 / partitionRatio).toInt | ||
| // Number of neighboring blocks to take in each column | ||
| val subBlocksPerCol = math.ceil(numColBlocks * 1.0 / partitionRatio).toInt | ||
| private def getPartitionId(blockRowIndex: Int, blockColIndex: Int): Int = { | ||
| // Coordinates of the block | ||
| val i = blockRowIndex / subBlocksPerRow | ||
| val j = blockColIndex / subBlocksPerCol | ||
| val blocksPerRow = math.ceil(numRowBlocks * 1.0 / subBlocksPerRow).toInt | ||
| val i = blockRowIndex / numRowBlocksPerPartition | ||
| val j = blockColIndex / numColBlocksPerPartition | ||
| val blocksPerRow = math.ceil(numRowBlocks * 1.0 / numRowBlocksPerPartition).toInt | ||
| j * blocksPerRow + i | ||
| } | ||
|
|
||
|
|
@@ -91,10 +96,10 @@ private[mllib] class GridPartitioner( | |
| * Represents a distributed matrix in blocks of local matrices. | ||
| * | ||
| * @param rdd The RDD of SubMatrices (local matrices) that form this matrix | ||
| * @param nRows Number of rows of this matrix | ||
| * @param nCols Number of columns of this matrix | ||
| * @param numRowBlocks Number of blocks that form the rows of this matrix | ||
| * @param numColBlocks Number of blocks that form the columns of this matrix | ||
| * @param nRows Number of rows of this matrix. If the supplied value is less than or equal to zero, | ||
| * the number of rows will be calculated when `numRows` is invoked. | ||
| * @param nCols Number of columns of this matrix. If the supplied value is less than or equal to | ||
| * zero, the number of columns will be calculated when `numCols` is invoked. | ||
| * @param rowsPerBlock Number of rows that make up each block. The blocks forming the final | ||
| * rows are not required to have the given number of rows | ||
| * @param colsPerBlock Number of columns that make up each block. The blocks forming the final | ||
|
|
@@ -104,8 +109,6 @@ class BlockMatrix( | |
| val rdd: RDD[((Int, Int), Matrix)], | ||
| private var nRows: Long, | ||
| private var nCols: Long, | ||
| val numRowBlocks: Int, | ||
| val numColBlocks: Int, | ||
| val rowsPerBlock: Int, | ||
| val colsPerBlock: Int) extends DistributedMatrix with Logging { | ||
|
|
||
|
|
@@ -115,25 +118,18 @@ class BlockMatrix( | |
| * Alternate constructor for BlockMatrix without the input of the number of rows and columns. | ||
| * | ||
| * @param rdd The RDD of SubMatrices (local matrices) that form this matrix | ||
| * @param numRowBlocks Number of blocks that form the rows of this matrix | ||
| * @param numColBlocks Number of blocks that form the columns of this matrix | ||
| * @param rowsPerBlock Number of rows that make up each block. The blocks forming the final | ||
| * rows are not required to have the given number of rows | ||
| * @param colsPerBlock Number of columns that make up each block. The blocks forming the final | ||
| * columns are not required to have the given number of columns | ||
| */ | ||
| def this( | ||
| rdd: RDD[((Int, Int), Matrix)], | ||
| numRowBlocks: Int, | ||
| numColBlocks: Int, | ||
| rowsPerBlock: Int, | ||
| colsPerBlock: Int) = { | ||
| this(rdd, 0L, 0L, numRowBlocks, numColBlocks, rowsPerBlock, colsPerBlock) | ||
| this(rdd, 0L, 0L, rowsPerBlock, colsPerBlock) | ||
| } | ||
|
|
||
| private[mllib] var partitioner: GridPartitioner = | ||
| new GridPartitioner(numRowBlocks, numColBlocks, rdd.partitions.length) | ||
|
|
||
| private lazy val dims: (Long, Long) = getDim | ||
|
|
||
| override def numRows(): Long = { | ||
|
|
@@ -146,48 +142,21 @@ class BlockMatrix( | |
| nCols | ||
| } | ||
|
|
||
| val numRowBlocks = math.ceil(numRows() * 1.0 / rowsPerBlock).toInt | ||
| val numColBlocks = math.ceil(numCols() * 1.0 / colsPerBlock).toInt | ||
|
|
||
| private[mllib] var partitioner: GridPartitioner = | ||
| new GridPartitioner(numRowBlocks, numColBlocks, rdd.partitions.length) | ||
|
|
||
|
|
||
|
|
||
| /** Returns the dimensions of the matrix. */ | ||
| private def getDim: (Long, Long) = { | ||
| case class MatrixMetaData(var rowIndex: Int, var colIndex: Int, | ||
| var numRows: Int, var numCols: Int) | ||
| // picks the sizes of the matrix with the maximum indices | ||
| def pickSizeByGreaterIndex(example: MatrixMetaData, base: MatrixMetaData): MatrixMetaData = { | ||
| if (example.rowIndex > base.rowIndex) { | ||
| base.rowIndex = example.rowIndex | ||
| base.numRows = example.numRows | ||
| } | ||
| if (example.colIndex > base.colIndex) { | ||
| base.colIndex = example.colIndex | ||
| base.numCols = example.numCols | ||
| } | ||
| base | ||
| } | ||
|
|
||
| // Aggregate will return an error if the rdd is empty | ||
| val lastRowCol = rdd.treeAggregate(new MatrixMetaData(0, 0, 0, 0))( | ||
| seqOp = (c, v) => (c, v) match { case (base, ((blockXInd, blockYInd), mat)) => | ||
| pickSizeByGreaterIndex( | ||
| new MatrixMetaData(blockXInd, blockYInd, mat.numRows, mat.numCols), base) | ||
| }, | ||
| combOp = (c1, c2) => (c1, c2) match { | ||
| case (res1, res2) => | ||
| pickSizeByGreaterIndex(res1, res2) | ||
| }) | ||
| // We add the size of the edge matrices, because they can be less than the specified | ||
| // rowsPerBlock or colsPerBlock. | ||
| (lastRowCol.rowIndex.toLong * rowsPerBlock + lastRowCol.numRows, | ||
| lastRowCol.colIndex.toLong * colsPerBlock + lastRowCol.numCols) | ||
| } | ||
| val (rows, cols) = rdd.map { case ((blockRowIndex, blockColIndex), mat) => | ||
| (blockRowIndex * rowsPerBlock + mat.numRows, blockColIndex * colsPerBlock + mat.numCols) | ||
| }.reduce((x0, x1) => (math.max(x0._1, x1._1), math.max(x0._2, x1._2))) | ||
|
|
||
| /** Returns the Frobenius Norm of the matrix */ | ||
| def normFro(): Double = { | ||
| math.sqrt(rdd.map { mat => mat._2 match { | ||
| case sparse: SparseMatrix => | ||
| sparse.values.map(x => math.pow(x, 2)).sum | ||
| case dense: DenseMatrix => | ||
| dense.values.map(x => math.pow(x, 2)).sum | ||
| } | ||
| }.reduce(_ + _)) | ||
| (math.max(rows, nRows), math.max(cols, nCols)) | ||
| } | ||
|
|
||
| /** Cache the underlying RDD. */ | ||
|
|
@@ -210,14 +179,14 @@ class BlockMatrix( | |
| s"Int.MaxValue. Currently numCols: ${numCols()}") | ||
| val nRows = numRows().toInt | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I'd check numRows and numCols here before converting to Int and throw an error if the matrix is too large. |
||
| val nCols = numCols().toInt | ||
| val mem = nRows * nCols * 8 / 1000000 | ||
| val mem = nRows.toLong * nCols / 125000 | ||
| if (mem > 500) logWarning(s"Storing this matrix will require $mem MB of memory!") | ||
|
|
||
| val parts = rdd.collect().sortBy(x => (x._1._2, x._1._1)) | ||
| val parts = rdd.collect() | ||
| val values = new Array[Double](nRows * nCols) | ||
| parts.foreach { case ((rowIndex, colIndex), block) => | ||
| val rowOffset = rowIndex * rowsPerBlock | ||
| val colOffset = colIndex * colsPerBlock | ||
| parts.foreach { case ((blockRowIndex, blockColIndex), block) => | ||
| val rowOffset = blockRowIndex * rowsPerBlock | ||
| val colOffset = blockColIndex * colsPerBlock | ||
| var j = 0 | ||
| val mat = block.toArray | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It would be good if we use
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I can modify it in the next 3 upcoming PRs (matrix multiplication-addition, conversions, repartition) if it doesn't.
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
| while (j < block.numCols) { | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The list of arguments cannot provide the complete info about the matrix. For example, if the last block row and the last block column are all missing. Then you cannot figure out the exact matrix size from this list of arguments.
It would be necessary to have
numRows,numCols,rowsPerBlock,colsPerBlock, and the RDD as input. We can provide factory methods (in follow-up PRs) to create block matrices from other formats, which could figure out the exactnumRowsandnumColsand use them in the constructor.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Will it really be the case that the whole row of blocks will be missing for the last row? That means that those rows (or columns) contain no information. Then why store (use) them?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We cannot make such assumption about the data. It is not rare that we have an empty column/row, which is the last column/row and the only column/row in the last column/row block. For example, in the popular mnist-digit dataset, the last column of the training data is empty.