-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-3974][MLlib] Distributed Block Matrix Abstractions #3200
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 1 commit
b693209
f378e16
aa8f086
589fbb6
19c17e8
b05aabb
645afbe
49b9586
d033861
9ae85aa
ab6cde0
ba414d2
239ab4b
1e8bb2a
1a63b20
eebbdf7
f9d664b
1694c9e
140f20e
5eecd48
24ec7b8
e1d3ee8
feb32a7
a8eace2
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
- Loading branch information
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -20,18 +20,32 @@ package org.apache.spark.mllib.linalg.distributed | |
| import breeze.linalg.{DenseMatrix => BDM} | ||
|
|
||
| import org.apache.spark._ | ||
| import org.apache.spark.mllib.linalg.{DenseMatrix, Matrices } | ||
| import org.apache.spark.mllib.linalg.DenseMatrix | ||
| import org.apache.spark.rdd.RDD | ||
| import org.apache.spark.SparkContext._ | ||
| import org.apache.spark.storage.StorageLevel | ||
| import org.apache.spark.util.Utils | ||
|
|
||
| case class BlockPartition( | ||
| blockIdRow: Int, | ||
| blockIdCol: Int, | ||
| mat: DenseMatrix) extends Serializable | ||
| /** | ||
| * Represents a local matrix that makes up one block of a distributed BlockMatrix | ||
| * | ||
| * @param blockIdRow The row index of this block | ||
| * @param blockIdCol The column index of this block | ||
| * @param mat The underlying local matrix | ||
| */ | ||
| case class BlockPartition(blockIdRow: Int, blockIdCol: Int, mat: DenseMatrix) extends Serializable | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The name Should the name be |
||
|
|
||
| // Information about BlockMatrix maintained on the driver | ||
| /** | ||
| * Information about the BlockMatrix maintained on the driver | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. "Information about a submatrix of a block matrix." |
||
| * | ||
| * @param partitionId The id of the partition the block is found in | ||
| * @param blockIdRow The row index of this block | ||
| * @param blockIdCol The column index of this block | ||
| * @param startRow The starting row index with respect to the distributed BlockMatrix | ||
| * @param numRows The number of rows in this block | ||
| * @param startCol The starting column index with respect to the distributed BlockMatrix | ||
| * @param numCols The number of columns in this block | ||
| */ | ||
| case class BlockPartitionInfo( | ||
| partitionId: Int, | ||
| blockIdRow: Int, | ||
|
|
@@ -41,6 +55,13 @@ case class BlockPartitionInfo( | |
| startCol: Long, | ||
| numCols: Int) extends Serializable | ||
|
|
||
| /** | ||
| * A partitioner that decides how the matrix is distributed in the cluster | ||
| * | ||
| * @param numPartitions Number of partitions | ||
| * @param rowPerBlock Number of rows that make up each block. | ||
| * @param colPerBlock Number of columns that make up each block. | ||
| */ | ||
| abstract class BlockMatrixPartitioner( | ||
| override val numPartitions: Int, | ||
| val rowPerBlock: Int, | ||
|
|
@@ -52,6 +73,14 @@ abstract class BlockMatrixPartitioner( | |
| } | ||
| } | ||
|
|
||
| /** | ||
| * A grid partitioner, which stores every block in a separate partition. | ||
| * | ||
| * @param numRowBlocks Number of blocks that form the rows of the matrix. | ||
| * @param numColBlocks Number of blocks that form the columns of the matrix. | ||
| * @param rowPerBlock Number of rows that make up each block. | ||
| * @param colPerBlock Number of columns that make up each block. | ||
| */ | ||
| class GridPartitioner( | ||
| val numRowBlocks: Int, | ||
| val numColBlocks: Int, | ||
|
|
@@ -74,6 +103,14 @@ class GridPartitioner( | |
| } | ||
| } | ||
|
|
||
| /** | ||
| * A specialized partitioner that stores all blocks in the same row in just one partition. | ||
| * | ||
| * @param numPartitions Number of partitions. Should be set as the number of blocks that form | ||
| * the rows of the matrix. | ||
| * @param rowPerBlock Number of rows that make up each block. | ||
| * @param colPerBlock Number of columns that make up each block. | ||
| */ | ||
| class RowBasedPartitioner( | ||
| override val numPartitions: Int, | ||
| override val rowPerBlock: Int, | ||
|
|
@@ -93,6 +130,14 @@ class RowBasedPartitioner( | |
| } | ||
| } | ||
|
|
||
| /** | ||
| * A specialized partitioner that stores all blocks in the same column in just one partition. | ||
| * | ||
| * @param numPartitions Number of partitions. Should be set as the number of blocks that form | ||
| * the columns of the matrix. | ||
| * @param rowPerBlock Number of rows that make up each block. | ||
| * @param colPerBlock Number of columns that make up each block. | ||
| */ | ||
| class ColumnBasedPartitioner( | ||
| override val numPartitions: Int, | ||
| override val rowPerBlock: Int, | ||
|
|
@@ -114,39 +159,44 @@ class ColumnBasedPartitioner( | |
| } | ||
| } | ||
|
|
||
| /** | ||
| * Represents a distributed matrix in blocks of local matrices. | ||
| * | ||
| * @param numRowBlocks Number of blocks that form the rows of this matrix | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Could it be derived from |
||
| * @param numColBlocks Number of blocks that form the columns of this matrix | ||
| * @param rdd The RDD of BlockPartitions (local matrices) that form this matrix | ||
| * @param partitioner A partitioner that specifies how BlockPartitions are stored in the cluster | ||
| */ | ||
| class BlockMatrix( | ||
| val numRowBlocks: Int, | ||
| val numColBlocks: Int, | ||
| val rdd: RDD[BlockPartition], | ||
| val partitioner: BlockMatrixPartitioner) extends DistributedMatrix with Logging { | ||
|
|
||
| // We need a key-value pair RDD to partition properly | ||
| private var matrixRDD = rdd.map { block => | ||
| partitioner match { | ||
| case r: RowBasedPartitioner => (block.blockIdRow, block) | ||
| case c: ColumnBasedPartitioner => (block.blockIdCol, block) | ||
| case g: GridPartitioner => (block.blockIdRow + numRowBlocks * block.blockIdCol, block) | ||
| case _ => throw new IllegalArgumentException("Unrecognized partitioner") | ||
| } | ||
| } | ||
| // A key-value pair RDD is required to partition properly | ||
| private var matrixRDD: RDD[(Int, BlockPartition)] = keyBy() | ||
|
|
||
| @transient var blockInfo_ : Map[(Int, Int), BlockPartitionInfo] = null | ||
|
|
||
| lazy val dims: (Long, Long) = getDim | ||
| private lazy val dims: (Long, Long) = getDim | ||
|
|
||
| override def numRows(): Long = dims._1 | ||
| override def numCols(): Long = dims._2 | ||
|
|
||
| if (partitioner.name.equals("column")) { | ||
| require(numColBlocks == partitioner.numPartitions) | ||
| require(numColBlocks == partitioner.numPartitions, "The number of column blocks should match" + | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Output the non-equal parameters here? |
||
| " the number of partitions of the column partitioner.") | ||
| } else if (partitioner.name.equals("row")) { | ||
| require(numRowBlocks == partitioner.numPartitions) | ||
| require(numRowBlocks == partitioner.numPartitions, "The number of row blocks should match" + | ||
| " the number of partitions of the row partitioner.") | ||
| } else if (partitioner.name.equals("grid")) { | ||
| require(numRowBlocks * numColBlocks == partitioner.numPartitions) | ||
| require(numRowBlocks * numColBlocks == partitioner.numPartitions, "The number of blocks " + | ||
| "should match the number of partitions of the grid partitioner.") | ||
| } else { | ||
| throw new IllegalArgumentException("Unrecognized partitioner.") | ||
| } | ||
|
|
||
| /* Returns the dimensions of the matrix. */ | ||
| def getDim: (Long, Long) = { | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Should this be private? |
||
| val bi = getBlockInfo | ||
| val xDim = bi.map { x => | ||
|
|
@@ -194,18 +244,20 @@ class BlockMatrix( | |
| }.toMap | ||
|
|
||
| blockInfo_ = blockStartRowCols.map{ case ((rowId, colId), (partId, numRow, numCol)) => | ||
| ((rowId, colId), new BlockPartitionInfo(partId, rowId, colId, cumulativeRowSum(rowId), numRow, | ||
| cumulativeColSum(colId), numCol)) | ||
| ((rowId, colId), new BlockPartitionInfo(partId, rowId, colId, cumulativeRowSum(rowId), | ||
| numRow, cumulativeColSum(colId), numCol)) | ||
| }.toMap | ||
| } | ||
|
|
||
| /* Returns a map of the information of the blocks that form the distributed matrix. */ | ||
| def getBlockInfo: Map[(Int, Int), BlockPartitionInfo] = { | ||
| if (blockInfo_ == null) { | ||
| calculateBlockInfo() | ||
| } | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. style: indentation |
||
| blockInfo_ | ||
| } | ||
|
|
||
| /* Returns the Frobenius Norm of the matrix */ | ||
| def normFro(): Double = { | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Remove this function. We can add it back later. |
||
| math.sqrt(rdd.map(lm => lm.mat.values.map(x => math.pow(x, 2)).sum).reduce(_ + _)) | ||
| } | ||
|
|
@@ -222,8 +274,19 @@ class BlockMatrix( | |
| this | ||
| } | ||
|
|
||
| private def keyBy(part: BlockMatrixPartitioner = partitioner): RDD[(Int, BlockPartition)] = { | ||
| rdd.map { block => | ||
| part match { | ||
| case r: RowBasedPartitioner => (block.blockIdRow, block) | ||
| case c: ColumnBasedPartitioner => (block.blockIdCol, block) | ||
| case g: GridPartitioner => (block.blockIdRow + numRowBlocks * block.blockIdCol, block) | ||
| case _ => throw new IllegalArgumentException("Unrecognized partitioner") | ||
| } | ||
| } | ||
| } | ||
|
|
||
| def repartition(part: BlockMatrixPartitioner = partitioner): DistributedMatrix = { | ||
| matrixRDD = matrixRDD.partitionBy(part) | ||
| matrixRDD = keyBy(part) | ||
| this | ||
| } | ||
|
|
||
|
|
@@ -259,80 +322,4 @@ class BlockMatrix( | |
| val localMat = collect() | ||
| new BDM[Double](localMat.numRows, localMat.numCols, localMat.values) | ||
| } | ||
|
|
||
| def add(other: DistributedMatrix): DistributedMatrix = { | ||
| other match { | ||
| // We really need a function to check if two matrices are partitioned similarly | ||
| case otherBlocked: BlockMatrix => | ||
| if (checkPartitioning(otherBlocked, OperationNames.add)){ | ||
| val addedBlocks = rdd.zip(otherBlocked.rdd).map{ case (a, b) => | ||
| val result = a.mat.toBreeze + b.mat.toBreeze | ||
| new BlockPartition(a.blockIdRow, a.blockIdCol, | ||
| Matrices.fromBreeze(result).asInstanceOf[DenseMatrix]) | ||
| } | ||
| new BlockMatrix(numRowBlocks, numColBlocks, addedBlocks, partitioner) | ||
| } else { | ||
| throw new SparkException( | ||
| "Cannot add matrices with non-matching partitioners") | ||
| } | ||
| case _ => | ||
| throw new IllegalArgumentException("Cannot add matrices of different types") | ||
| } | ||
| } | ||
|
|
||
| def multiply(other: DistributedMatrix): BlockMatrix = { | ||
| other match { | ||
| case otherBlocked: BlockMatrix => | ||
| if (checkPartitioning(otherBlocked, OperationNames.multiply)){ | ||
|
|
||
| val resultPartitioner = new GridPartitioner(numRowBlocks, otherBlocked.numColBlocks, | ||
| partitioner.rowPerBlock, otherBlocked.partitioner.colPerBlock) | ||
|
|
||
| val multiplyBlocks = matrixRDD.join(otherBlocked.matrixRDD, partitioner). | ||
| map { case (key, (mat1, mat2)) => | ||
| val C = mat1.mat multiply mat2.mat | ||
| (mat1.blockIdRow + numRowBlocks * mat2.blockIdCol, C.toBreeze) | ||
| }.reduceByKey(resultPartitioner, (a, b) => a + b) | ||
|
|
||
| val newBlocks = multiplyBlocks.map{ case (index, mat) => | ||
| val colId = index / numRowBlocks | ||
| val rowId = index - colId * numRowBlocks | ||
| new BlockPartition(rowId, colId, Matrices.fromBreeze(mat).asInstanceOf[DenseMatrix]) | ||
| } | ||
| new BlockMatrix(numRowBlocks, otherBlocked.numColBlocks, newBlocks, resultPartitioner) | ||
| } else { | ||
| throw new SparkException( | ||
| "Cannot multiply matrices with non-matching partitioners") | ||
| } | ||
| case _ => | ||
| throw new IllegalArgumentException("Cannot add matrices of different types") | ||
| } | ||
| } | ||
|
|
||
| private def checkPartitioning(other: BlockMatrix, operation: Int): Boolean = { | ||
| val otherPartitioner = other.partitioner | ||
| operation match { | ||
| case OperationNames.add => | ||
| partitioner.equals(otherPartitioner) | ||
| case OperationNames.multiply => | ||
| partitioner.name == "column" && otherPartitioner.name == "row" && | ||
| partitioner.numPartitions == otherPartitioner.numPartitions && | ||
| partitioner.colPerBlock == otherPartitioner.rowPerBlock && | ||
| numColBlocks == other.numRowBlocks | ||
| case _ => | ||
| throw new IllegalArgumentException("Unsupported operation") | ||
| } | ||
| } | ||
| } | ||
|
|
||
| /** | ||
| * Maintains supported and default block matrix operation names. | ||
| * | ||
| * Currently supported operations: `add`, `multiply`. | ||
| */ | ||
| private object OperationNames { | ||
|
|
||
| val add: Int = 1 | ||
| val multiply: Int = 2 | ||
|
|
||
| } | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Try to be more explicit on the imports.