Skip to content
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Add new object LocalPrefixSpan, and do some optimization.
  • Loading branch information
zhangjiajin committed Jul 10, 2015
commit 574e56ccfb271d0ed86c3eba95d1a11a8688495d
129 changes: 129 additions & 0 deletions mllib/src/main/scala/org/apache/spark/mllib/fpm/LocalPrefixSpan.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.fpm

import org.apache.spark.Logging
import org.apache.spark.annotation.Experimental

/**
*
* :: Experimental ::
*
* Calculate all patterns of a projected database in local.
*/
@Experimental
private[fpm] object LocalPrefixSpan extends Logging with Serializable {

/**
* Calculate all patterns of a projected database in local.
* @param minCount minimum count
* @param maxPatternLength maximum pattern length
* @param prefix prefix
* @param projectedDatabase the projected dabase
* @return a set of sequential pattern pairs,
* the key of pair is pattern (a list of elements),
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"the key of pair is pattern (a list of elements)," -> "the key of pair is sequential pattern (a list of items),"

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed

* the value of pair is the pattern's count.
*/
def run(
minCount: Long,
maxPatternLength: Int,
prefix: Array[Int],
projectedDatabase: Array[Array[Int]]): Array[(Array[Int], Long)] = {
getPatternsWithPrefix(minCount, maxPatternLength, prefix, projectedDatabase)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why not just rename getPatternsWithPrefix -> run?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed.

}

/**
* calculate suffix sequence following a prefix in a sequence
* @param prefix prefix
* @param sequence sequence
* @return suffix sequence
*/
def getSuffix(prefix: Int, sequence: Array[Int]): Array[Int] = {
val index = sequence.indexOf(prefix)
if (index == -1) {
Array()
} else {
sequence.drop(index + 1)
}
}

/**
* Generates frequent items by filtering the input data using minimal count level.
* @param minCount the absolute minimum count
* @param sequences sequences data
* @return array of item and count pair
*/
private def getFreqItemAndCounts(
minCount: Long,
sequences: Array[Array[Int]]): Array[(Int, Long)] = {
sequences.flatMap(_.distinct)
.groupBy(x => x)
.mapValues(_.length.toLong)
.filter(_._2 >= minCount)
.toArray
}

/**
* Get the frequent prefixes' projected database.
* @param prePrefix the frequent prefixes' prefix
* @param frequentPrefixes frequent prefixes
* @param sequences sequences data
* @return prefixes and projected database
*/
private def getPatternAndProjectedDatabase(
prePrefix: Array[Int],
frequentPrefixes: Array[Int],
sequences: Array[Array[Int]]): Array[(Array[Int], Array[Array[Int]])] = {
val filteredProjectedDatabase = sequences
.map(x => x.filter(frequentPrefixes.contains(_)))
frequentPrefixes.map { x =>
val sub = filteredProjectedDatabase.map(y => getSuffix(x, y)).filter(_.nonEmpty)
(prePrefix ++ Array(x), sub)
}.filter(x => x._2.nonEmpty)
}

/**
* Calculate all patterns of a projected database in local.
* @param minCount the minimum count
* @param maxPatternLength maximum pattern length
* @param prefix prefix
* @param projectedDatabase projected database
* @return patterns
*/
private def getPatternsWithPrefix(
minCount: Long,
maxPatternLength: Int,
prefix: Array[Int],
projectedDatabase: Array[Array[Int]]): Array[(Array[Int], Long)] = {
val frequentPrefixAndCounts = getFreqItemAndCounts(minCount, projectedDatabase)
val frequentPatternAndCounts = frequentPrefixAndCounts
.map(x => (prefix ++ Array(x._1), x._2))
val prefixProjectedDatabases = getPatternAndProjectedDatabase(
prefix, frequentPrefixAndCounts.map(_._1), projectedDatabase)

val continueProcess = prefixProjectedDatabases.nonEmpty && prefix.length + 1 < maxPatternLength
if (continueProcess) {
val nextPatterns = prefixProjectedDatabases
.map(x => getPatternsWithPrefix(minCount, maxPatternLength, x._1, x._2))
.reduce(_ ++ _)
frequentPatternAndCounts ++ nextPatterns
} else {
frequentPatternAndCounts
}
}
}
127 changes: 27 additions & 100 deletions mllib/src/main/scala/org/apache/spark/mllib/fpm/PrefixSpan.scala
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,8 @@ class PrefixSpan private (
* Sets the minimal support level (default: `0.1`).
*/
def setMinSupport(minSupport: Double): this.type = {
require(minSupport >= 0 && minSupport <= 1)
require(minSupport >= 0 && minSupport <= 1,
"The minimum support value must be between 0 and 1, including 0 and 1.")
this.minSupport = minSupport
this
}
Expand All @@ -62,7 +63,8 @@ class PrefixSpan private (
* Sets maximal pattern length (default: `10`).
*/
def setMaxPatternLength(maxPatternLength: Int): this.type = {
require(maxPatternLength >= 1)
require(maxPatternLength >= 1,
"The maximum pattern length value must be greater than 0.")
this.maxPatternLength = maxPatternLength
this
}
Expand All @@ -73,35 +75,38 @@ class PrefixSpan private (
* a sequence is an ordered list of elements.
* @return a set of sequential pattern pairs,
* the key of pair is pattern (a list of elements),
* the value of pair is the pattern's support value.
* the value of pair is the pattern's count.
*/
def run(sequences: RDD[Array[Int]]): RDD[(Array[Int], Long)] = {
if (sequences.getStorageLevel == StorageLevel.NONE) {
logWarning("Input data is not cached.")
}
val minCount = getAbsoluteMinSupport(sequences)
val minCount = getMinCount(sequences)
val (lengthOnePatternsAndCounts, prefixAndCandidates) =
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Remove findLengthOnePatterns method and directly set

val lengthOnePatternsAndCounts = getFreqItemAndCounts(minCount, sequences).collect()
val prefixAndCandidates = getPatternAndProjectedDatabase(
  lengthOnePatternsAndCounts.map(_._1), sequences)

here

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed.

findLengthOnePatterns(minCount, sequences)
val repartitionedRdd = makePrefixProjectedDatabases(prefixAndCandidates)
val nextPatterns = getPatternsInLocal(minCount, repartitionedRdd)
val allPatterns = lengthOnePatternsAndCounts.map(x => (Array(x._1), x._2)) ++ nextPatterns
val projectedDatabase = makePrefixProjectedDatabases(prefixAndCandidates)
val nextPatterns = getPatternsInLocal(minCount, projectedDatabase)
val lengthOnePatternsAndCountsRdd =
sequences.sparkContext.parallelize(
lengthOnePatternsAndCounts.map(x => (Array(x._1), x._2)))
val allPatterns = lengthOnePatternsAndCountsRdd ++ nextPatterns
allPatterns
}

/**
* Get the absolute minimum support value (sequences count * minSupport).
* Get the minimum count (sequences count * minSupport).
* @param sequences input data set, contains a set of sequences,
* @return absolute minimum support value,
* @return minimum count,
*/
private def getAbsoluteMinSupport(sequences: RDD[Array[Int]]): Long = {
if (minSupport == 0) 0L else (sequences.count() * minSupport).toLong
private def getMinCount(sequences: RDD[Array[Int]]): Long = {
if (minSupport == 0) 0L else math.ceil(sequences.count() * minSupport).toLong
}

/**
* Generates frequent items by filtering the input data using minimal support level.
* @param minCount the absolute minimum support
* Generates frequent items by filtering the input data using minimal count level.
* @param minCount the absolute minimum count
* @param sequences original sequences data
* @return array of frequent pattern ordered by their frequencies
* @return array of item and count pair
*/
private def getFreqItemAndCounts(
minCount: Long,
Expand All @@ -111,22 +116,6 @@ class PrefixSpan private (
.filter(_._2 >= minCount)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think you should collect it directly. When generating the final patterns, use sc.parallelize, which might be cheaper.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed

}

/**
* Generates frequent items by filtering the input data using minimal support level.
* @param minCount the absolute minimum support
* @param sequences sequences data
* @return array of frequent pattern ordered by their frequencies
*/
private def getFreqItemAndCounts(
minCount: Long,
sequences: Array[Array[Int]]): Array[(Int, Long)] = {
sequences.flatMap(_.distinct)
.groupBy(x => x)
.mapValues(_.length.toLong)
.filter(_._2 >= minCount)
.toArray
}

/**
* Get the frequent prefixes' projected database.
* @param frequentPrefixes frequent prefixes
Expand All @@ -141,44 +130,25 @@ class PrefixSpan private (
}
filteredSequences.flatMap { x =>
frequentPrefixes.map { y =>
val sub = getSuffix(y, x)
val sub = LocalPrefixSpan.getSuffix(y, x)
(Array(y), sub)
}
}.filter(x => x._2.nonEmpty)
}

/**
* Get the frequent prefixes' projected database.
* @param prePrefix the frequent prefixes' prefix
* @param frequentPrefixes frequent prefixes
* @param sequences sequences data
* @return prefixes and projected database
*/
private def getPatternAndProjectedDatabase(
prePrefix: Array[Int],
frequentPrefixes: Array[Int],
sequences: Array[Array[Int]]): Array[(Array[Int], Array[Array[Int]])] = {
val filteredProjectedDatabase = sequences
.map(x => x.filter(frequentPrefixes.contains(_)))
frequentPrefixes.map { x =>
val sub = filteredProjectedDatabase.map(y => getSuffix(x, y)).filter(_.nonEmpty)
(prePrefix ++ Array(x), sub)
}.filter(x => x._2.nonEmpty)
}.filter(_._2.nonEmpty)
}
}

/**
* Find the patterns that it's length is one
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This method does much more than it claims. The method we discuss is collect frequent items first and then broadcast them to be used for projection. Generating suffices could be in a separate method.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Fixed.

* @param minCount the absolute minimum support
* @param minCount the minimum count
* @param sequences original sequences data
* @return length-one patterns and projection table
*/
private def findLengthOnePatterns(
minCount: Long,
sequences: RDD[Array[Int]]): (RDD[(Int, Long)], RDD[(Array[Int], Array[Int])]) = {
sequences: RDD[Array[Int]]): (Array[(Int, Long)], RDD[(Array[Int], Array[Int])]) = {
val frequentLengthOnePatternAndCounts = getFreqItemAndCounts(minCount, sequences)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ditto, I think you can collect directly and use it for filtering.

val prefixAndProjectedDatabase = getPatternAndProjectedDatabase(
frequentLengthOnePatternAndCounts.keys.collect(), sequences)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

No need to collect twice

val frequentLengthOnePatternAndCounts = getFreqItemAndCounts(minCount, sequences).collect()
val prefixAndProjectedDatabase = getPatternAndProjectedDatabase(
  frequentLengthOnePatternAndCounts.map(_._1), sequences)
(frequentLengthOnePatternAndCounts, prefixAndProjectedDatabase)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed.

(frequentLengthOnePatternAndCounts, prefixAndProjectedDatabase)
(frequentLengthOnePatternAndCounts.collect(), prefixAndProjectedDatabase)
}

/**
Expand All @@ -195,58 +165,15 @@ class PrefixSpan private (

/**
* calculate the patterns in local.
* @param minCount the absolute minimum support
* @param minCount the absolute minimum count
* @param data patterns and projected sequences data data
* @return patterns
*/
private def getPatternsInLocal(
minCount: Long,
data: RDD[(Array[Int], Array[Array[Int]])]): RDD[(Array[Int], Long)] = {
data.flatMap { x =>
getPatternsWithPrefix(minCount, x._1, x._2)
}
}

/**
* calculate the patterns with one prefix in local.
* @param minCount the absolute minimum support
* @param prefix prefix
* @param projectedDatabase patterns and projected sequences data
* @return patterns
*/
private def getPatternsWithPrefix(
minCount: Long,
prefix: Array[Int],
projectedDatabase: Array[Array[Int]]): Array[(Array[Int], Long)] = {
val frequentPrefixAndCounts = getFreqItemAndCounts(minCount, projectedDatabase)
val frequentPatternAndCounts = frequentPrefixAndCounts
.map(x => (prefix ++ Array(x._1), x._2))
val prefixProjectedDatabases = getPatternAndProjectedDatabase(
prefix, frequentPrefixAndCounts.map(_._1), projectedDatabase)

val continueProcess = prefixProjectedDatabases.nonEmpty && prefix.length + 1 < maxPatternLength
if (continueProcess) {
val nextPatterns = prefixProjectedDatabases
.map(x => getPatternsWithPrefix(minCount, x._1, x._2))
.reduce(_ ++ _)
frequentPatternAndCounts ++ nextPatterns
} else {
frequentPatternAndCounts
}
}

/**
* calculate suffix sequence following a prefix in a sequence
* @param prefix prefix
* @param sequence sequence
* @return suffix sequence
*/
private def getSuffix(prefix: Int, sequence: Array[Int]): Array[Int] = {
val index = sequence.indexOf(prefix)
if (index == -1) {
Array()
} else {
sequence.drop(index + 1)
LocalPrefixSpan.run(minCount, maxPatternLength, x._1, x._2)
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ class PrefixspanSuite extends SparkFunSuite with MLlibTestSparkContext {
}

val prefixspan = new PrefixSpan()
.setMinSupport(0.34)
.setMinSupport(0.33)
.setMaxPatternLength(50)
val result1 = prefixspan.run(rdd)
val expectedValue1 = Array(
Expand Down Expand Up @@ -97,7 +97,7 @@ class PrefixspanSuite extends SparkFunSuite with MLlibTestSparkContext {
)
assert(compareResult(expectedValue2, result2.collect()))

prefixspan.setMinSupport(0.34).setMaxPatternLength(2)
prefixspan.setMinSupport(0.33).setMaxPatternLength(2)
val result3 = prefixspan.run(rdd)
val expectedValue3 = Array(
(Array(1), 4L),
Expand Down