Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
113 changes: 113 additions & 0 deletions mllib/src/main/scala/org/apache/spark/mllib/fpm/LocalPrefixSpan.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.fpm

import org.apache.spark.Logging
import org.apache.spark.annotation.Experimental

/**
*
* :: Experimental ::
*
* Calculate all patterns of a projected database in local.
*/
@Experimental
private[fpm] object LocalPrefixSpan extends Logging with Serializable {

/**
* Calculate all patterns of a projected database.
* @param minCount minimum count
* @param maxPatternLength maximum pattern length
* @param prefix prefix
* @param projectedDatabase the projected dabase
* @return a set of sequential pattern pairs,
* the key of pair is sequential pattern (a list of items),
* the value of pair is the pattern's count.
*/
def run(
minCount: Long,
maxPatternLength: Int,
prefix: Array[Int],
projectedDatabase: Array[Array[Int]]): Array[(Array[Int], Long)] = {
val frequentPrefixAndCounts = getFreqItemAndCounts(minCount, projectedDatabase)
val frequentPatternAndCounts = frequentPrefixAndCounts
.map(x => (prefix ++ Array(x._1), x._2))
val prefixProjectedDatabases = getPatternAndProjectedDatabase(
prefix, frequentPrefixAndCounts.map(_._1), projectedDatabase)

val continueProcess = prefixProjectedDatabases.nonEmpty && prefix.length + 1 < maxPatternLength
if (continueProcess) {
val nextPatterns = prefixProjectedDatabases
.map(x => run(minCount, maxPatternLength, x._1, x._2))
.reduce(_ ++ _)
frequentPatternAndCounts ++ nextPatterns
} else {
frequentPatternAndCounts
}
}

/**
* calculate suffix sequence following a prefix in a sequence
* @param prefix prefix
* @param sequence sequence
* @return suffix sequence
*/
def getSuffix(prefix: Int, sequence: Array[Int]): Array[Int] = {
val index = sequence.indexOf(prefix)
if (index == -1) {
Array()
} else {
sequence.drop(index + 1)
}
}

/**
* Generates frequent items by filtering the input data using minimal count level.
* @param minCount the absolute minimum count
* @param sequences sequences data
* @return array of item and count pair
*/
private def getFreqItemAndCounts(
minCount: Long,
sequences: Array[Array[Int]]): Array[(Int, Long)] = {
sequences.flatMap(_.distinct)
.groupBy(x => x)
.mapValues(_.length.toLong)
.filter(_._2 >= minCount)
.toArray
}

/**
* Get the frequent prefixes' projected database.
* @param prePrefix the frequent prefixes' prefix
* @param frequentPrefixes frequent prefixes
* @param sequences sequences data
* @return prefixes and projected database
*/
private def getPatternAndProjectedDatabase(
prePrefix: Array[Int],
frequentPrefixes: Array[Int],
sequences: Array[Array[Int]]): Array[(Array[Int], Array[Array[Int]])] = {
val filteredProjectedDatabase = sequences
.map(x => x.filter(frequentPrefixes.contains(_)))
frequentPrefixes.map { x =>
val sub = filteredProjectedDatabase.map(y => getSuffix(x, y)).filter(_.nonEmpty)
(prePrefix ++ Array(x), sub)
}.filter(x => x._2.nonEmpty)
}
}
212 changes: 212 additions & 0 deletions mllib/src/main/scala/org/apache/spark/mllib/fpm/PrefixSpan.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.fpm

import org.apache.spark.Logging
import org.apache.spark.annotation.Experimental
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel

/**
*
* :: Experimental ::
*
* A parallel PrefixSpan algorithm to mine sequential pattern.
* The PrefixSpan algorithm is described in
* [[http://doi.org/10.1109/ICDE.2001.914830]].
*
* @param minSupport the minimal support level of the sequential pattern, any pattern appears
* more than (minSupport * size-of-the-dataset) times will be output
* @param maxPatternLength the maximal length of the sequential pattern, any pattern appears
* less than maxPatternLength will be output
*
* @see [[https://en.wikipedia.org/wiki/Sequential_Pattern_Mining Sequential Pattern Mining
* (Wikipedia)]]
*/
@Experimental
class PrefixSpan private (
private var minSupport: Double,
private var maxPatternLength: Int) extends Logging with Serializable {

private val minPatternsBeforeShuffle: Int = 20

/**
* Constructs a default instance with default parameters
* {minSupport: `0.1`, maxPatternLength: `10`}.
*/
def this() = this(0.1, 10)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Move the auxiliary constructor before private var.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Fixed


/**
* Sets the minimal support level (default: `0.1`).
*/
def setMinSupport(minSupport: Double): this.type = {
require(minSupport >= 0 && minSupport <= 1,
"The minimum support value must be between 0 and 1, including 0 and 1.")
this.minSupport = minSupport
this
}

/**
* Sets maximal pattern length (default: `10`).
*/
def setMaxPatternLength(maxPatternLength: Int): this.type = {
require(maxPatternLength >= 1,
"The maximum pattern length value must be greater than 0.")
this.maxPatternLength = maxPatternLength
this
}

/**
* Find the complete set of sequential patterns in the input sequences.
* @param sequences input data set, contains a set of sequences,
* a sequence is an ordered list of elements.
* @return a set of sequential pattern pairs,
* the key of pair is pattern (a list of elements),
* the value of pair is the pattern's count.
*/
def run(sequences: RDD[Array[Int]]): RDD[(Array[Int], Long)] = {
if (sequences.getStorageLevel == StorageLevel.NONE) {
logWarning("Input data is not cached.")
}
val minCount = getMinCount(sequences)
val lengthOnePatternsAndCounts =
getFreqItemAndCounts(minCount, sequences).collect()
val prefixAndProjectedDatabase = getPrefixAndProjectedDatabase(
lengthOnePatternsAndCounts.map(_._1), sequences)

var patternsCount = lengthOnePatternsAndCounts.length
var allPatternAndCounts = sequences.sparkContext.parallelize(
lengthOnePatternsAndCounts.map(x => (Array(x._1), x._2)))
var currentProjectedDatabase = prefixAndProjectedDatabase
while (patternsCount <= minPatternsBeforeShuffle &&
currentProjectedDatabase.count() != 0) {
val (nextPatternAndCounts, nextProjectedDatabase) =
getPatternCountsAndProjectedDatabase(minCount, currentProjectedDatabase)
patternsCount = nextPatternAndCounts.count().toInt
currentProjectedDatabase = nextProjectedDatabase
allPatternAndCounts = allPatternAndCounts ++ nextPatternAndCounts
}
if (patternsCount > 0) {
val groupedProjectedDatabase = currentProjectedDatabase
.map(x => (x._1.toSeq, x._2))
.groupByKey()
.map(x => (x._1.toArray, x._2.toArray))
val nextPatternAndCounts = getPatternsInLocal(minCount, groupedProjectedDatabase)
allPatternAndCounts = allPatternAndCounts ++ nextPatternAndCounts
}
allPatternAndCounts
}

/**
* Get the pattern and counts, and projected database
* @param minCount minimum count
* @param prefixAndProjectedDatabase prefix and projected database,
* @return pattern and counts, and projected database
* (Array[pattern, count], RDD[prefix, projected database ])
*/
private def getPatternCountsAndProjectedDatabase(
minCount: Long,
prefixAndProjectedDatabase: RDD[(Array[Int], Array[Int])]):
(RDD[(Array[Int], Long)], RDD[(Array[Int], Array[Int])]) = {
val prefixAndFreqentItemAndCounts = prefixAndProjectedDatabase.flatMap{ x =>
x._2.distinct.map(y => ((x._1.toSeq, y), 1L))
}.reduceByKey(_ + _)
.filter(_._2 >= minCount)
val patternAndCounts = prefixAndFreqentItemAndCounts
.map(x => (x._1._1.toArray ++ Array(x._1._2), x._2))
val prefixlength = prefixAndProjectedDatabase.take(1)(0)._1.length
if (prefixlength + 1 >= maxPatternLength) {
(patternAndCounts, prefixAndProjectedDatabase.filter(x => false))
} else {
val frequentItemsMap = prefixAndFreqentItemAndCounts
.keys.map(x => (x._1, x._2))
.groupByKey()
.mapValues(_.toSet)
.collect
.toMap
val nextPrefixAndProjectedDatabase = prefixAndProjectedDatabase
.filter(x => frequentItemsMap.contains(x._1))
.flatMap { x =>
val frequentItemSet = frequentItemsMap(x._1)
val filteredSequence = x._2.filter(frequentItemSet.contains(_))
val subProjectedDabase = frequentItemSet.map{ y =>
(y, LocalPrefixSpan.getSuffix(y, filteredSequence))
}.filter(_._2.nonEmpty)
subProjectedDabase.map(y => (x._1 ++ Array(y._1), y._2))
}
(patternAndCounts, nextPrefixAndProjectedDatabase)
}
}

/**
* Get the minimum count (sequences count * minSupport).
* @param sequences input data set, contains a set of sequences,
* @return minimum count,
*/
private def getMinCount(sequences: RDD[Array[Int]]): Long = {
if (minSupport == 0) 0L else math.ceil(sequences.count() * minSupport).toLong
}

/**
* Generates frequent items by filtering the input data using minimal count level.
* @param minCount the absolute minimum count
* @param sequences original sequences data
* @return array of item and count pair
*/
private def getFreqItemAndCounts(
minCount: Long,
sequences: RDD[Array[Int]]): RDD[(Int, Long)] = {
sequences.flatMap(_.distinct.map((_, 1L)))
.reduceByKey(_ + _)
.filter(_._2 >= minCount)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think you should collect it directly. When generating the final patterns, use sc.parallelize, which might be cheaper.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed

}

/**
* Get the frequent prefixes' projected database.
* @param frequentPrefixes frequent prefixes
* @param sequences sequences data
* @return prefixes and projected database
*/
private def getPrefixAndProjectedDatabase(
frequentPrefixes: Array[Int],
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sequences: RDD[Array[Int]]): RDD[(Array[Int], Array[Int])] = {
val filteredSequences = sequences.map { p =>
p.filter (frequentPrefixes.contains(_) )
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

otherwise, contains is very expensive (linear time).

}
filteredSequences.flatMap { x =>
frequentPrefixes.map { y =>
val sub = LocalPrefixSpan.getSuffix(y, x)
(Array(y), sub)
}.filter(_._2.nonEmpty)
}
}

/**
* calculate the patterns in local.
* @param minCount the absolute minimum count
* @param data patterns and projected sequences data data
* @return patterns
*/
private def getPatternsInLocal(
minCount: Long,
data: RDD[(Array[Int], Array[Array[Int]])]): RDD[(Array[Int], Long)] = {
data.flatMap { x =>
LocalPrefixSpan.run(minCount, maxPatternLength, x._1, x._2)
}
}
}
Loading