-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-6487][MLlib] Add sequential pattern mining algorithm PrefixSpan to Spark MLlib #7258
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
91fd7e6
575995f
951fd42
a2eb14c
89bc368
1dd33ad
4c60fb3
ba5df34
574e56c
ca9c4c8
22b0ef4
078d410
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,113 @@ | ||
| /* | ||
| * Licensed to the Apache Software Foundation (ASF) under one or more | ||
| * contributor license agreements. See the NOTICE file distributed with | ||
| * this work for additional information regarding copyright ownership. | ||
| * The ASF licenses this file to You under the Apache License, Version 2.0 | ||
| * (the "License"); you may not use this file except in compliance with | ||
| * the License. You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| package org.apache.spark.mllib.fpm | ||
|
|
||
| import org.apache.spark.Logging | ||
| import org.apache.spark.annotation.Experimental | ||
|
|
||
| /** | ||
| * | ||
| * :: Experimental :: | ||
| * | ||
| * Calculate all patterns of a projected database in local. | ||
| */ | ||
| @Experimental | ||
| private[fpm] object LocalPrefixSpan extends Logging with Serializable { | ||
|
|
||
| /** | ||
| * Calculate all patterns of a projected database. | ||
| * @param minCount minimum count | ||
| * @param maxPatternLength maximum pattern length | ||
| * @param prefix prefix | ||
| * @param projectedDatabase the projected dabase | ||
| * @return a set of sequential pattern pairs, | ||
| * the key of pair is sequential pattern (a list of items), | ||
| * the value of pair is the pattern's count. | ||
| */ | ||
| def run( | ||
| minCount: Long, | ||
| maxPatternLength: Int, | ||
| prefix: Array[Int], | ||
| projectedDatabase: Array[Array[Int]]): Array[(Array[Int], Long)] = { | ||
| val frequentPrefixAndCounts = getFreqItemAndCounts(minCount, projectedDatabase) | ||
| val frequentPatternAndCounts = frequentPrefixAndCounts | ||
| .map(x => (prefix ++ Array(x._1), x._2)) | ||
| val prefixProjectedDatabases = getPatternAndProjectedDatabase( | ||
| prefix, frequentPrefixAndCounts.map(_._1), projectedDatabase) | ||
|
|
||
| val continueProcess = prefixProjectedDatabases.nonEmpty && prefix.length + 1 < maxPatternLength | ||
| if (continueProcess) { | ||
| val nextPatterns = prefixProjectedDatabases | ||
| .map(x => run(minCount, maxPatternLength, x._1, x._2)) | ||
| .reduce(_ ++ _) | ||
| frequentPatternAndCounts ++ nextPatterns | ||
| } else { | ||
| frequentPatternAndCounts | ||
| } | ||
| } | ||
|
|
||
| /** | ||
| * calculate suffix sequence following a prefix in a sequence | ||
| * @param prefix prefix | ||
| * @param sequence sequence | ||
| * @return suffix sequence | ||
| */ | ||
| def getSuffix(prefix: Int, sequence: Array[Int]): Array[Int] = { | ||
| val index = sequence.indexOf(prefix) | ||
| if (index == -1) { | ||
| Array() | ||
| } else { | ||
| sequence.drop(index + 1) | ||
| } | ||
| } | ||
|
|
||
| /** | ||
| * Generates frequent items by filtering the input data using minimal count level. | ||
| * @param minCount the absolute minimum count | ||
| * @param sequences sequences data | ||
| * @return array of item and count pair | ||
| */ | ||
| private def getFreqItemAndCounts( | ||
| minCount: Long, | ||
| sequences: Array[Array[Int]]): Array[(Int, Long)] = { | ||
| sequences.flatMap(_.distinct) | ||
| .groupBy(x => x) | ||
| .mapValues(_.length.toLong) | ||
| .filter(_._2 >= minCount) | ||
| .toArray | ||
| } | ||
|
|
||
| /** | ||
| * Get the frequent prefixes' projected database. | ||
| * @param prePrefix the frequent prefixes' prefix | ||
| * @param frequentPrefixes frequent prefixes | ||
| * @param sequences sequences data | ||
| * @return prefixes and projected database | ||
| */ | ||
| private def getPatternAndProjectedDatabase( | ||
| prePrefix: Array[Int], | ||
| frequentPrefixes: Array[Int], | ||
| sequences: Array[Array[Int]]): Array[(Array[Int], Array[Array[Int]])] = { | ||
| val filteredProjectedDatabase = sequences | ||
| .map(x => x.filter(frequentPrefixes.contains(_))) | ||
| frequentPrefixes.map { x => | ||
| val sub = filteredProjectedDatabase.map(y => getSuffix(x, y)).filter(_.nonEmpty) | ||
| (prePrefix ++ Array(x), sub) | ||
| }.filter(x => x._2.nonEmpty) | ||
| } | ||
| } |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,212 @@ | ||
| /* | ||
| * Licensed to the Apache Software Foundation (ASF) under one or more | ||
| * contributor license agreements. See the NOTICE file distributed with | ||
| * this work for additional information regarding copyright ownership. | ||
| * The ASF licenses this file to You under the Apache License, Version 2.0 | ||
| * (the "License"); you may not use this file except in compliance with | ||
| * the License. You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| package org.apache.spark.mllib.fpm | ||
|
|
||
| import org.apache.spark.Logging | ||
| import org.apache.spark.annotation.Experimental | ||
| import org.apache.spark.rdd.RDD | ||
| import org.apache.spark.storage.StorageLevel | ||
|
|
||
| /** | ||
| * | ||
| * :: Experimental :: | ||
| * | ||
| * A parallel PrefixSpan algorithm to mine sequential pattern. | ||
| * The PrefixSpan algorithm is described in | ||
| * [[http://doi.org/10.1109/ICDE.2001.914830]]. | ||
| * | ||
| * @param minSupport the minimal support level of the sequential pattern, any pattern appears | ||
| * more than (minSupport * size-of-the-dataset) times will be output | ||
| * @param maxPatternLength the maximal length of the sequential pattern, any pattern appears | ||
| * less than maxPatternLength will be output | ||
| * | ||
| * @see [[https://en.wikipedia.org/wiki/Sequential_Pattern_Mining Sequential Pattern Mining | ||
| * (Wikipedia)]] | ||
| */ | ||
| @Experimental | ||
| class PrefixSpan private ( | ||
| private var minSupport: Double, | ||
| private var maxPatternLength: Int) extends Logging with Serializable { | ||
|
|
||
| private val minPatternsBeforeShuffle: Int = 20 | ||
|
|
||
| /** | ||
| * Constructs a default instance with default parameters | ||
| * {minSupport: `0.1`, maxPatternLength: `10`}. | ||
| */ | ||
| def this() = this(0.1, 10) | ||
|
|
||
| /** | ||
| * Sets the minimal support level (default: `0.1`). | ||
| */ | ||
| def setMinSupport(minSupport: Double): this.type = { | ||
| require(minSupport >= 0 && minSupport <= 1, | ||
| "The minimum support value must be between 0 and 1, including 0 and 1.") | ||
| this.minSupport = minSupport | ||
| this | ||
| } | ||
|
|
||
| /** | ||
| * Sets maximal pattern length (default: `10`). | ||
| */ | ||
| def setMaxPatternLength(maxPatternLength: Int): this.type = { | ||
| require(maxPatternLength >= 1, | ||
| "The maximum pattern length value must be greater than 0.") | ||
| this.maxPatternLength = maxPatternLength | ||
| this | ||
| } | ||
|
|
||
| /** | ||
| * Find the complete set of sequential patterns in the input sequences. | ||
| * @param sequences input data set, contains a set of sequences, | ||
| * a sequence is an ordered list of elements. | ||
| * @return a set of sequential pattern pairs, | ||
| * the key of pair is pattern (a list of elements), | ||
| * the value of pair is the pattern's count. | ||
| */ | ||
| def run(sequences: RDD[Array[Int]]): RDD[(Array[Int], Long)] = { | ||
| if (sequences.getStorageLevel == StorageLevel.NONE) { | ||
| logWarning("Input data is not cached.") | ||
| } | ||
| val minCount = getMinCount(sequences) | ||
| val lengthOnePatternsAndCounts = | ||
| getFreqItemAndCounts(minCount, sequences).collect() | ||
| val prefixAndProjectedDatabase = getPrefixAndProjectedDatabase( | ||
| lengthOnePatternsAndCounts.map(_._1), sequences) | ||
|
|
||
| var patternsCount = lengthOnePatternsAndCounts.length | ||
| var allPatternAndCounts = sequences.sparkContext.parallelize( | ||
| lengthOnePatternsAndCounts.map(x => (Array(x._1), x._2))) | ||
| var currentProjectedDatabase = prefixAndProjectedDatabase | ||
| while (patternsCount <= minPatternsBeforeShuffle && | ||
| currentProjectedDatabase.count() != 0) { | ||
| val (nextPatternAndCounts, nextProjectedDatabase) = | ||
| getPatternCountsAndProjectedDatabase(minCount, currentProjectedDatabase) | ||
| patternsCount = nextPatternAndCounts.count().toInt | ||
| currentProjectedDatabase = nextProjectedDatabase | ||
| allPatternAndCounts = allPatternAndCounts ++ nextPatternAndCounts | ||
| } | ||
| if (patternsCount > 0) { | ||
| val groupedProjectedDatabase = currentProjectedDatabase | ||
| .map(x => (x._1.toSeq, x._2)) | ||
| .groupByKey() | ||
| .map(x => (x._1.toArray, x._2.toArray)) | ||
| val nextPatternAndCounts = getPatternsInLocal(minCount, groupedProjectedDatabase) | ||
| allPatternAndCounts = allPatternAndCounts ++ nextPatternAndCounts | ||
| } | ||
| allPatternAndCounts | ||
| } | ||
|
|
||
| /** | ||
| * Get the pattern and counts, and projected database | ||
| * @param minCount minimum count | ||
| * @param prefixAndProjectedDatabase prefix and projected database, | ||
| * @return pattern and counts, and projected database | ||
| * (Array[pattern, count], RDD[prefix, projected database ]) | ||
| */ | ||
| private def getPatternCountsAndProjectedDatabase( | ||
| minCount: Long, | ||
| prefixAndProjectedDatabase: RDD[(Array[Int], Array[Int])]): | ||
| (RDD[(Array[Int], Long)], RDD[(Array[Int], Array[Int])]) = { | ||
| val prefixAndFreqentItemAndCounts = prefixAndProjectedDatabase.flatMap{ x => | ||
| x._2.distinct.map(y => ((x._1.toSeq, y), 1L)) | ||
| }.reduceByKey(_ + _) | ||
| .filter(_._2 >= minCount) | ||
| val patternAndCounts = prefixAndFreqentItemAndCounts | ||
| .map(x => (x._1._1.toArray ++ Array(x._1._2), x._2)) | ||
| val prefixlength = prefixAndProjectedDatabase.take(1)(0)._1.length | ||
| if (prefixlength + 1 >= maxPatternLength) { | ||
| (patternAndCounts, prefixAndProjectedDatabase.filter(x => false)) | ||
| } else { | ||
| val frequentItemsMap = prefixAndFreqentItemAndCounts | ||
| .keys.map(x => (x._1, x._2)) | ||
| .groupByKey() | ||
| .mapValues(_.toSet) | ||
| .collect | ||
| .toMap | ||
| val nextPrefixAndProjectedDatabase = prefixAndProjectedDatabase | ||
| .filter(x => frequentItemsMap.contains(x._1)) | ||
| .flatMap { x => | ||
| val frequentItemSet = frequentItemsMap(x._1) | ||
| val filteredSequence = x._2.filter(frequentItemSet.contains(_)) | ||
| val subProjectedDabase = frequentItemSet.map{ y => | ||
| (y, LocalPrefixSpan.getSuffix(y, filteredSequence)) | ||
| }.filter(_._2.nonEmpty) | ||
| subProjectedDabase.map(y => (x._1 ++ Array(y._1), y._2)) | ||
| } | ||
| (patternAndCounts, nextPrefixAndProjectedDatabase) | ||
| } | ||
| } | ||
|
|
||
| /** | ||
| * Get the minimum count (sequences count * minSupport). | ||
| * @param sequences input data set, contains a set of sequences, | ||
| * @return minimum count, | ||
| */ | ||
| private def getMinCount(sequences: RDD[Array[Int]]): Long = { | ||
| if (minSupport == 0) 0L else math.ceil(sequences.count() * minSupport).toLong | ||
| } | ||
|
|
||
| /** | ||
| * Generates frequent items by filtering the input data using minimal count level. | ||
| * @param minCount the absolute minimum count | ||
| * @param sequences original sequences data | ||
| * @return array of item and count pair | ||
| */ | ||
| private def getFreqItemAndCounts( | ||
| minCount: Long, | ||
| sequences: RDD[Array[Int]]): RDD[(Int, Long)] = { | ||
| sequences.flatMap(_.distinct.map((_, 1L))) | ||
| .reduceByKey(_ + _) | ||
| .filter(_._2 >= minCount) | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think you should collect it directly. When generating the final patterns, use
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. fixed |
||
| } | ||
|
|
||
| /** | ||
| * Get the frequent prefixes' projected database. | ||
| * @param frequentPrefixes frequent prefixes | ||
| * @param sequences sequences data | ||
| * @return prefixes and projected database | ||
| */ | ||
| private def getPrefixAndProjectedDatabase( | ||
| frequentPrefixes: Array[Int], | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. |
||
| sequences: RDD[Array[Int]]): RDD[(Array[Int], Array[Int])] = { | ||
| val filteredSequences = sequences.map { p => | ||
| p.filter (frequentPrefixes.contains(_) ) | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. otherwise, |
||
| } | ||
| filteredSequences.flatMap { x => | ||
| frequentPrefixes.map { y => | ||
| val sub = LocalPrefixSpan.getSuffix(y, x) | ||
| (Array(y), sub) | ||
| }.filter(_._2.nonEmpty) | ||
| } | ||
| } | ||
|
|
||
| /** | ||
| * calculate the patterns in local. | ||
| * @param minCount the absolute minimum count | ||
| * @param data patterns and projected sequences data data | ||
| * @return patterns | ||
| */ | ||
| private def getPatternsInLocal( | ||
| minCount: Long, | ||
| data: RDD[(Array[Int], Array[Array[Int]])]): RDD[(Array[Int], Long)] = { | ||
| data.flatMap { x => | ||
| LocalPrefixSpan.run(minCount, maxPatternLength, x._1, x._2) | ||
| } | ||
| } | ||
| } | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Move the auxiliary constructor before
private var.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Fixed