-
Notifications
You must be signed in to change notification settings - Fork 2.2k
Fix #2477: Regression accessing modules_to_save
#2481
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
githubnemo
merged 11 commits into
huggingface:main
from
githubnemo:issue/modules-to-save-regression
Apr 17, 2025
Merged
Changes from 2 commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
ee6c5c6
Fix #2477: Regression accessing `modules_to_save`
a5267bf
Reviewer comments
c2cfb68
Remove presumably superflous code from inject_adapter
61d616a
Reviewer comments + extended tests
0b22b6e
Merge remote-tracking branch 'huggingface/main' into issue/modules-to…
3651f0e
Use a llama model for sequence classification
777448b
Check `modules_to_save` for prompt tuning methods
f903d78
Make style
39c7572
Don't assume config.modules_to_save to be iterable
b133062
Move `set_additional_trainable_modules`
b429434
Merge branch 'main' into issue/modules-to-save-regression
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,248 @@ | ||
| # Copyright 2025-present the HuggingFace Inc. team. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License governing permissions and limitations under the License. | ||
|
|
||
| import pytest | ||
| import torch | ||
| from transformers import AutoModelForSequenceClassification | ||
|
|
||
| from peft import ( | ||
| AdaLoraConfig, | ||
| BOFTConfig, | ||
| BoneConfig, | ||
| CPTConfig, | ||
| FourierFTConfig, | ||
| HRAConfig, | ||
| IA3Config, | ||
| LoraConfig, | ||
| OFTConfig, | ||
| PrefixTuningConfig, | ||
| PromptEncoderConfig, | ||
| PromptTuningConfig, | ||
| PromptTuningInit, | ||
| VBLoRAConfig, | ||
| VeraConfig, | ||
| ) | ||
|
|
||
| from .testing_common import PeftCommonTester | ||
|
|
||
|
|
||
| PEFT_SEQ_CLS_MODELS_TO_TEST = [ | ||
| "hf-internal-testing/tiny-random-BertForSequenceClassification", | ||
| "hf-internal-testing/tiny-random-RobertaForSequenceClassification", | ||
BenjaminBossan marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| ] | ||
|
|
||
|
|
||
| ALL_CONFIGS = [ | ||
| ( | ||
| AdaLoraConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "target_modules": None, | ||
| "total_step": 1, | ||
| }, | ||
| ), | ||
| ( | ||
| BOFTConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "target_modules": None, | ||
| }, | ||
| ), | ||
| ( | ||
| BoneConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "target_modules": None, | ||
| "r": 2, | ||
| }, | ||
| ), | ||
| ( | ||
| CPTConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "cpt_token_ids": [0, 1, 2, 3, 4, 5, 6, 7], # Example token IDs for testing | ||
| "cpt_mask": [1, 1, 1, 1, 1, 1, 1, 1], | ||
| "cpt_tokens_type_mask": [1, 2, 2, 2, 3, 3, 4, 4], | ||
| }, | ||
| ), | ||
| ( | ||
| FourierFTConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "n_frequency": 10, | ||
| "target_modules": None, | ||
| }, | ||
| ), | ||
| ( | ||
| HRAConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "target_modules": None, | ||
| }, | ||
| ), | ||
| ( | ||
| IA3Config, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "target_modules": None, | ||
| "feedforward_modules": None, | ||
| }, | ||
| ), | ||
| ( | ||
| LoraConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "r": 8, | ||
| "lora_alpha": 32, | ||
| "target_modules": None, | ||
| "lora_dropout": 0.05, | ||
| "bias": "none", | ||
| }, | ||
| ), | ||
| # LoRA + trainable tokens | ||
| ( | ||
| LoraConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "r": 8, | ||
| "lora_alpha": 32, | ||
| "target_modules": None, | ||
| "lora_dropout": 0.05, | ||
| "bias": "none", | ||
| "trainable_token_indices": [0, 1, 3], | ||
| }, | ||
| ), | ||
| ( | ||
| OFTConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "target_modules": None, | ||
| }, | ||
| ), | ||
| ( | ||
| PrefixTuningConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "num_virtual_tokens": 10, | ||
| }, | ||
| ), | ||
| ( | ||
| PromptEncoderConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "num_virtual_tokens": 10, | ||
| "encoder_hidden_size": 32, | ||
| }, | ||
| ), | ||
| ( | ||
| PromptTuningConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "num_virtual_tokens": 10, | ||
| }, | ||
| ), | ||
| ( | ||
| VBLoRAConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "target_modules": None, | ||
| "vblora_dropout": 0.05, | ||
| "vector_length": 1, | ||
| "num_vectors": 2, | ||
| }, | ||
| ), | ||
| ( | ||
| VeraConfig, | ||
| { | ||
| "task_type": "SEQ_CLS", | ||
| "r": 8, | ||
| "target_modules": None, | ||
| "vera_dropout": 0.05, | ||
| "projection_prng_key": 0xFF, | ||
| "d_initial": 0.1, | ||
| "save_projection": True, | ||
| "bias": "none", | ||
| }, | ||
| ), | ||
| ] | ||
|
|
||
|
|
||
| class TestSequenceClassificationModels(PeftCommonTester): | ||
BenjaminBossan marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| r""" | ||
| Tests for basic coverage of AutoModelForSequenceClassification and classification-specific cases. | ||
| Most of the functionality is probably already covered by other tests. | ||
| """ | ||
|
|
||
| transformers_class = AutoModelForSequenceClassification | ||
|
|
||
| def skipTest(self, reason=""): | ||
| # for backwards compatibility with unittest style test classes | ||
| pytest.skip(reason) | ||
|
|
||
| def prepare_inputs_for_testing(self): | ||
| input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) | ||
| attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) | ||
| return {"input_ids": input_ids, "attention_mask": attention_mask} | ||
|
|
||
| @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) | ||
| @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) | ||
| def test_attributes_parametrized(self, model_id, config_cls, config_kwargs): | ||
| self._test_model_attr(model_id, config_cls, config_kwargs.copy()) | ||
|
|
||
| @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) | ||
| @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) | ||
| def test_adapter_name(self, model_id, config_cls, config_kwargs): | ||
| self._test_adapter_name(model_id, config_cls, config_kwargs.copy()) | ||
|
|
||
| @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) | ||
| @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) | ||
| def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs): | ||
| self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy()) | ||
|
|
||
| @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) | ||
| @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) | ||
| def test_prompt_tuning_text_prepare_for_training(self, model_id, config_cls, config_kwargs): | ||
| if config_cls != PromptTuningConfig: | ||
| pytest.skip(f"This test does not apply to {config_cls}") | ||
| config_kwargs = config_kwargs.copy() | ||
| config_kwargs["prompt_tuning_init"] = PromptTuningInit.TEXT | ||
| config_kwargs["prompt_tuning_init_text"] = "This is a test prompt." | ||
| config_kwargs["tokenizer_name_or_path"] = model_id | ||
| self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy()) | ||
|
|
||
| @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) | ||
| @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) | ||
| def test_save_pretrained(self, model_id, config_cls, config_kwargs): | ||
| self._test_save_pretrained(model_id, config_cls, config_kwargs.copy()) | ||
|
|
||
| @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) | ||
| @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) | ||
| def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs): | ||
| self._test_save_pretrained(model_id, config_cls, config_kwargs.copy(), safe_serialization=False) | ||
|
|
||
| @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) | ||
| @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) | ||
| def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs): | ||
| self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs.copy()) | ||
|
|
||
| @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) | ||
| @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) | ||
| def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs): | ||
| self._test_save_pretrained_selected_adapters( | ||
| model_id, config_cls, config_kwargs.copy(), safe_serialization=False | ||
| ) | ||
|
|
||
| @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) | ||
| @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) | ||
| def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs): | ||
| self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs.copy()) | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.