Skip to content
270 changes: 270 additions & 0 deletions PathPlanning/RRT/rrt_with_sobol_sampler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,270 @@
"""

Path planning Sample Code with Randomized Rapidly-Exploring Random
Trees with sobol low discrepancy sampler(RRTSobol).
Sobol wiki https://en.wikipedia.org/wiki/Sobol_sequence

The goal of low discrepancy samplers is to generate a sequence of points that
optimizes a criterion called dispersion. Intuitively, the idea is to place
samples to cover the exploration space in a way that makes the largest
uncovered area be as small as possible. This generalizes of the idea of grid
resolution. For a grid, the resolution may be selected by defining the step
size for each axis. As the step size is decreased, the resolution increases.
If a grid-based motion planning algorithm can increase the resolution
arbitrarily, it becomes resolution complete. Dispersion can be considered as a
powerful generalization of the notion of resolution.

Taken from
LaValle, Steven M. Planning algorithms. Cambridge university press, 2006.


authors:
First implementation AtsushiSakai(@Atsushi_twi)
Sobol sampler Rafael A.
Rojas ([email protected])


"""

import math
import random
from sobol import sobol_quasirand
import sys

import matplotlib.pyplot as plt
import numpy as np

show_animation = True


class RRTSobol:
"""
Class for RRTSobol planning
"""

class Node:
"""
RRTSobol Node
"""

def __init__(self, x, y):
self.x = x
self.y = y
self.path_x = []
self.path_y = []
self.parent = None

def __init__(self,
start,
goal,
obstacle_list,
rand_area,
expand_dis=3.0,
path_resolution=0.5,
goal_sample_rate=5,
max_iter=500):
"""
Setting Parameter

start:Start Position [x,y]
goal:Goal Position [x,y]
obstacle_list:obstacle Positions [[x,y,size],...]
randArea:Random Sampling Area [min,max]

"""
self.start = self.Node(start[0], start[1])
self.end = self.Node(goal[0], goal[1])
self.min_rand = rand_area[0]
self.max_rand = rand_area[1]
self.expand_dis = expand_dis
self.path_resolution = path_resolution
self.goal_sample_rate = goal_sample_rate
self.max_iter = max_iter
self.obstacle_list = obstacle_list
self.node_list = []
self.sobol_inter_ = 0

def planning(self, animation=True):
"""
rrt path planning

animation: flag for animation on or off
"""

self.node_list = [self.start]
for i in range(self.max_iter):
rnd_node = self.get_random_node()
nearest_ind = self.get_nearest_node_index(self.node_list, rnd_node)
nearest_node = self.node_list[nearest_ind]

new_node = self.steer(nearest_node, rnd_node, self.expand_dis)

if self.check_collision(new_node, self.obstacle_list):
self.node_list.append(new_node)

if animation and i % 5 == 0:
self.draw_graph(rnd_node)

if self.calc_dist_to_goal(self.node_list[-1].x,
self.node_list[-1].y) <= self.expand_dis:
final_node = self.steer(self.node_list[-1], self.end,
self.expand_dis)
if self.check_collision(final_node, self.obstacle_list):
return self.generate_final_course(len(self.node_list) - 1)

if animation and i % 5:
self.draw_graph(rnd_node)

return None # cannot find path

def steer(self, from_node, to_node, extend_length=float("inf")):

new_node = self.Node(from_node.x, from_node.y)
d, theta = self.calc_distance_and_angle(new_node, to_node)

new_node.path_x = [new_node.x]
new_node.path_y = [new_node.y]

if extend_length > d:
extend_length = d

n_expand = math.floor(extend_length / self.path_resolution)

for _ in range(n_expand):
new_node.x += self.path_resolution * math.cos(theta)
new_node.y += self.path_resolution * math.sin(theta)
new_node.path_x.append(new_node.x)
new_node.path_y.append(new_node.y)

d, _ = self.calc_distance_and_angle(new_node, to_node)
if d <= self.path_resolution:
new_node.path_x.append(to_node.x)
new_node.path_y.append(to_node.y)
new_node.x = to_node.x
new_node.y = to_node.y

new_node.parent = from_node

return new_node

def generate_final_course(self, goal_ind):
path = [[self.end.x, self.end.y]]
node = self.node_list[goal_ind]
while node.parent is not None:
path.append([node.x, node.y])
node = node.parent
path.append([node.x, node.y])

return path

def calc_dist_to_goal(self, x, y):
dx = x - self.end.x
dy = y - self.end.y
return math.hypot(dx, dy)

def get_random_node(self):
if random.randint(0, 100) > self.goal_sample_rate:
rand_coordinates, n = sobol_quasirand(2, self.sobol_inter_)

rand_coordinates = self.min_rand + \
rand_coordinates*(self.max_rand - self.min_rand)
self.sobol_inter_ = n
rnd = self.Node(*rand_coordinates)

else: # goal point sampling
rnd = self.Node(self.end.x, self.end.y)
return rnd

def draw_graph(self, rnd=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [sys.exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in self.node_list:
if node.parent:
plt.plot(node.path_x, node.path_y, "-g")

for (ox, oy, size) in self.obstacle_list:
self.plot_circle(ox, oy, size)

plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.end.x, self.end.y, "xr")
plt.axis("equal")
plt.axis([-2, 15, -2, 15])
plt.grid(True)
plt.pause(0.01)

@staticmethod
def plot_circle(x, y, size, color="-b"): # pragma: no cover
deg = list(range(0, 360, 5))
deg.append(0)
xl = [x + size * math.cos(np.deg2rad(d)) for d in deg]
yl = [y + size * math.sin(np.deg2rad(d)) for d in deg]
plt.plot(xl, yl, color)

@staticmethod
def get_nearest_node_index(node_list, rnd_node):
dlist = [(node.x - rnd_node.x)**2 + (node.y - rnd_node.y)**2
for node in node_list]
minind = dlist.index(min(dlist))

return minind

@staticmethod
def check_collision(node, obstacle_list):

if node is None:
return False

for (ox, oy, size) in obstacle_list:
dx_list = [ox - x for x in node.path_x]
dy_list = [oy - y for y in node.path_y]
d_list = [dx * dx + dy * dy for (dx, dy) in zip(dx_list, dy_list)]

if min(d_list) <= size**2:
return False # collision

return True # safe

@staticmethod
def calc_distance_and_angle(from_node, to_node):
dx = to_node.x - from_node.x
dy = to_node.y - from_node.y
d = math.hypot(dx, dy)
theta = math.atan2(dy, dx)
return d, theta


def main(gx=6.0, gy=10.0):
print("start " + __file__)

# ====Search Path with RRTSobol====
obstacle_list = [(5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2),
(9, 5, 2), (8, 10, 1)] # [x, y, radius]
# Set Initial parameters
rrt = RRTSobol(
start=[0, 0],
goal=[gx, gy],
rand_area=[-2, 15],
obstacle_list=obstacle_list)
path = rrt.planning(animation=show_animation)

if path is None:
print("Cannot find path")
else:
print("found path!!")

# Draw final path
if show_animation:
rrt.draw_graph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.01) # Need for Mac
plt.show()


if __name__ == '__main__':
main()
1 change: 1 addition & 0 deletions PathPlanning/RRT/sobol/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .sobol import i4_sobol as sobol_quasirand
Loading