Skip to content

Conversation

@Deegue
Copy link
Owner

@Deegue Deegue commented Oct 22, 2019

Prepare for 3.0

HeartSaVioR and others added 30 commits September 20, 2019 08:57
…o be up in SparkContextSuite

### What changes were proposed in this pull request?

This patch proposes to increase timeout to wait for executor(s) to be up in SparkContextSuite, as we observed these tests failed due to wait timeout.

### Why are the changes needed?

There's some case that CI build is extremely slow which requires 3x or more time to pass the test.
(https://issues.apache.org/jira/browse/SPARK-29139?focusedCommentId=16934034&page=com.atlassian.jira.plugin.system.issuetabpanels%3Acomment-tabpanel#comment-16934034)

Allocating higher timeout wouldn't bring additional latency, as the code checks the condition with sleeping 10 ms per loop iteration.

### Does this PR introduce any user-facing change?

No

### How was this patch tested?

N/A, as the case is not likely to be occurred frequently.

Closes #25864 from HeartSaVioR/SPARK-29139.

Authored-by: Jungtaek Lim (HeartSaVioR) <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
### What changes were proposed in this pull request?

This PR allows Python toLocalIterator to prefetch the next partition while the first partition is being collected. The PR also adds a demo micro bench mark in the examples directory, we may wish to keep this or not.

### Why are the changes needed?

In https://issues.apache.org/jira/browse/SPARK-23961 / 5e79ae3 we changed PySpark to only pull one partition at a time. This is memory efficient, but if partitions take time to compute this can mean we're spending more time blocking.

### Does this PR introduce any user-facing change?

A new param is added to toLocalIterator

### How was this patch tested?

New unit test inside of `test_rdd.py` checks the time that the elements are evaluated at. Another test that the results remain the same are added to `test_dataframe.py`.

I also ran a micro benchmark in the examples directory `prefetch.py` which shows an improvement of ~40% in this specific use case.

>
> 19/08/16 17:11:36 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
> Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
> Setting default log level to "WARN".
> To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
> Running timers:
>
> [Stage 32:>                                                         (0 + 1) / 1]
> Results:
>
> Prefetch time:
>
> 100.228110831
>
>
> Regular time:
>
> 188.341721614
>
>
>

Closes #25515 from holdenk/SPARK-27659-allow-pyspark-tolocalitr-to-prefetch.

Authored-by: Holden Karau <[email protected]>
Signed-off-by: Holden Karau <[email protected]>
### What changes were proposed in this pull request?

Switch from using a Thread sleep for waiting for commands to finish to just waiting for the command to finish with a watcher & improve the error messages in the SecretsTestsSuite.

### Why are the changes needed?
Currently some of the Spark Kubernetes tests have race conditions with command execution, and the frequent use of eventually makes debugging test failures difficult.

### Does this PR introduce any user-facing change?

No

### How was this patch tested?

Existing tests pass after removal of thread.sleep

Closes #25765 from holdenk/SPARK-28937SPARK-28936-improve-kubernetes-integration-tests.

Authored-by: Holden Karau <[email protected]>
Signed-off-by: Holden Karau <[email protected]>
…from python execution in Python 2

### What changes were proposed in this pull request?

This PR allows non-ascii string as an exception message in Python 2 by explicitly en/decoding in case of `str` in Python 2.

### Why are the changes needed?

Previously PySpark will hang when the `UnicodeDecodeError` occurs and the real exception cannot be passed to the JVM side.

See the reproducer as below:

```python
def f():
    raise Exception("中")
spark = SparkSession.builder.master('local').getOrCreate()
spark.sparkContext.parallelize([1]).map(lambda x: f()).count()
```

### Does this PR introduce any user-facing change?

User may not observe hanging for the similar cases.

### How was this patch tested?

Added a new test and manually checking.

This pr is based on #18324, credits should also go to dataknocker.
To make lint-python happy for python3, it also includes a followup fix for #25814

Closes #25847 from advancedxy/python_exception_19926_and_21045.

Authored-by: Xianjin YE <[email protected]>
Signed-off-by: HyukjinKwon <[email protected]>
### What changes were proposed in this pull request?
Modify the approach in `DataFrameNaFunctions.fillValue`, the new one uses `df.withColumns` which only address the columns need to be filled. After this change, there are no more ambiguous fileds detected for joined dataframe.

### Why are the changes needed?
Before this change, when you have a joined table that has the same field name from both original table, fillna will fail even if you specify a subset that does not include the 'ambiguous' fields.
```
scala> val df1 = Seq(("f1-1", "f2", null), ("f1-2", null, null), ("f1-3", "f2", "f3-1"), ("f1-4", "f2", "f3-1")).toDF("f1", "f2", "f3")
scala> val df2 = Seq(("f1-1", null, null), ("f1-2", "f2", null), ("f1-3", "f2", "f4-1")).toDF("f1", "f2", "f4")
scala> val df_join = df1.alias("df1").join(df2.alias("df2"), Seq("f1"), joinType="left_outer")
scala> df_join.na.fill("", cols=Seq("f4"))

org.apache.spark.sql.AnalysisException: Reference 'f2' is ambiguous, could be: df1.f2, df2.f2.;
```

### Does this PR introduce any user-facing change?
Yes, fillna operation will pass and give the right answer for a joined table.

### How was this patch tested?
Local test and newly added UT.

Closes #25768 from xuanyuanking/SPARK-29063.

Lead-authored-by: Yuanjian Li <[email protected]>
Co-authored-by: Xiao Li <[email protected]>
Signed-off-by: HyukjinKwon <[email protected]>
### What changes were proposed in this pull request?

This PRs add Java 11 version to the document.

### Why are the changes needed?

Apache Spark 3.0.0 starts to support JDK11 officially.

### Does this PR introduce any user-facing change?

Yes.

![jdk11](https://user-images.githubusercontent.com/9700541/65364063-39204580-dbc4-11e9-982b-fc1552be2ec5.png)

### How was this patch tested?

Manually. Doc generation.

Closes #25875 from dongjoon-hyun/SPARK-29196.

Authored-by: Dongjoon Hyun <[email protected]>
Signed-off-by: HyukjinKwon <[email protected]>
…gative threshold

### What changes were proposed in this pull request?
if threshold<0, convert implict 0 to 1, althought this will break sparsity

### Why are the changes needed?
if `threshold<0`, current impl deal with sparse vector incorrectly.
See JIRA [SPARK-29144](https://issues.apache.org/jira/browse/SPARK-29144) and [Scikit-Learn's Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html) ('Threshold may not be less than 0 for operations on sparse matrices.') for details.

### Does this PR introduce any user-facing change?
no

### How was this patch tested?
added testsuite

Closes #25829 from zhengruifeng/binarizer_throw_exception_sparse_vector.

Authored-by: zhengruifeng <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
…rately

### What changes were proposed in this pull request?

This PR aims to extend the existing benchmarks to save JDK9+ result separately.
All `core` module benchmark test results are added. I'll run the other test suites in another PR.
After regenerating all results, we will check JDK11 performance regressions.

### Why are the changes needed?

From Apache Spark 3.0, we support both JDK8 and JDK11. We need to have a way to find the performance regression.

### Does this PR introduce any user-facing change?

No.

### How was this patch tested?

Manually run the benchmark.

Closes #25873 from dongjoon-hyun/SPARK-JDK11-PERF.

Authored-by: Dongjoon Hyun <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
### What changes were proposed in this pull request?

In the PR, I propose to change behavior of the `date_part()` function in handling `null` field, and make it the same as PostgreSQL has. If `field` parameter is `null`, the function should return `null` of the `double` type as PostgreSQL does:
```sql
# select date_part(null, date '2019-09-20');
 date_part
-----------

(1 row)

# select pg_typeof(date_part(null, date '2019-09-20'));
    pg_typeof
------------------
 double precision
(1 row)
```

### Why are the changes needed?
The `date_part()` function was added to maintain feature parity with PostgreSQL but current behavior of the function is different in handling null as `field`.

### Does this PR introduce any user-facing change?
Yes.

Before:
```sql
spark-sql> select date_part(null, date'2019-09-20');
Error in query: null; line 1 pos 7
```

After:
```sql
spark-sql> select date_part(null, date'2019-09-20');
NULL
```

### How was this patch tested?
Add new tests to `DateFunctionsSuite for 2 cases:
- `field` = `null`, `source` = a date literal
- `field` = `null`, `source` = a date column

Closes #25865 from MaxGekk/date_part-null.

Authored-by: Maxim Gekk <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
### What changes were proposed in this pull request?

Update breeze dependency to 1.0.

### Why are the changes needed?

Breeze 1.0 supports Scala 2.13 and has a few bug fixes.

### Does this PR introduce any user-facing change?

No.

### How was this patch tested?

Existing tests.

Closes #25874 from srowen/SPARK-28772.

Authored-by: Sean Owen <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
…rly in splitAggregateExpressions

### What changes were proposed in this pull request?

This patch fixes the issue brought by [SPARK-21870](http://issues.apache.org/jira/browse/SPARK-21870): when generating code for parameter type, it doesn't consider array type in javaType. At least we have one, Spark should generate code for BinaryType as `byte[]`, but Spark create the code for BinaryType as `[B` and generated code fails compilation.

Below is the generated code which failed compilation (Line 380):

```
/* 380 */   private void agg_doAggregate_count_0([B agg_expr_1_1, boolean agg_exprIsNull_1_1, org.apache.spark.sql.catalyst.InternalRow agg_unsafeRowAggBuffer_1) throws java.io.IOException {
/* 381 */     // evaluate aggregate function for count
/* 382 */     boolean agg_isNull_26 = false;
/* 383 */     long agg_value_28 = -1L;
/* 384 */     if (!false && agg_exprIsNull_1_1) {
/* 385 */       long agg_value_31 = agg_unsafeRowAggBuffer_1.getLong(1);
/* 386 */       agg_isNull_26 = false;
/* 387 */       agg_value_28 = agg_value_31;
/* 388 */     } else {
/* 389 */       long agg_value_33 = agg_unsafeRowAggBuffer_1.getLong(1);
/* 390 */
/* 391 */       long agg_value_32 = -1L;
/* 392 */
/* 393 */       agg_value_32 = agg_value_33 + 1L;
/* 394 */       agg_isNull_26 = false;
/* 395 */       agg_value_28 = agg_value_32;
/* 396 */     }
/* 397 */     // update unsafe row buffer
/* 398 */     agg_unsafeRowAggBuffer_1.setLong(1, agg_value_28);
/* 399 */   }
```

There wasn't any test for HashAggregateExec specifically testing this, but randomized test in ObjectHashAggregateSuite could encounter this and that's why ObjectHashAggregateSuite is flaky.

### Why are the changes needed?

Without the fix, generated code from HashAggregateExec may fail compilation.

### Does this PR introduce any user-facing change?

No

### How was this patch tested?

Added new UT. Without the fix, newly added UT fails.

Closes #25830 from HeartSaVioR/SPARK-29140.

Authored-by: Jungtaek Lim (HeartSaVioR) <[email protected]>
Signed-off-by: Takeshi Yamamuro <[email protected]>
… stopped

### What changes were proposed in this pull request?

TransportClientFactory.createClient() is called by task and TransportClientFactory.close() is called by executor.
When stop the executor, close() will set workerGroup = null, NPE will occur in createClient which generate many exception in log.
For exception occurs after close(), treated it as an expected Exception
and transform it to InterruptedException which can be processed by Executor.

### Why are the changes needed?

The change can reduce the exception stack trace in log file, and user won't be confused by these excepted exception.

### Does this PR introduce any user-facing change?

N/A

### How was this patch tested?

New tests are added in TransportClientFactorySuite and ExecutorSuite

Closes #25759 from colinmjj/spark-19147.

Authored-by: colinma <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
### What changes were proposed in this pull request?
Setting custom sort key for duration and execution time column.

### Why are the changes needed?
Sorting on duration and execution time columns consider time as a string after converting into readable form which is the reason for wrong sort results as mentioned in [SPARK-29053](https://issues.apache.org/jira/browse/SPARK-29053).

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
Test manually. Screenshots are attached.

After patch:
**Duration**
![Duration](https://user-images.githubusercontent.com/40591404/65339861-93cc9800-dbea-11e9-95e6-63b107a5a372.png)
**Execution time**
![Execution Time](https://user-images.githubusercontent.com/40591404/65339870-97601f00-dbea-11e9-9d1d-690c59bc1bde.png)

Closes #25855 from amanomer/SPARK29053.

Authored-by: aman_omer <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
…g file

### What changes were proposed in this pull request?

Credit to vanzin as he found and commented on this while reviewing #25670 - [comment](#25670 (comment)).

This patch proposes to specify UTF-8 explicitly while reading/writer event log file.

### Why are the changes needed?

The event log file is being read/written as default character set of JVM process which may open the chance to bring some problems on reading event log files from another machines. Spark's de facto standard character set is UTF-8, so it should be explicitly set to.

### Does this PR introduce any user-facing change?

Yes, if end users have been running Spark process with different default charset than "UTF-8", especially their driver JVM processes. No otherwise.

### How was this patch tested?

Existing UTs, as ReplayListenerSuite contains "end-to-end" event logging/reading tests (both uncompressed/compressed).

Closes #25845 from HeartSaVioR/SPARK-29160.

Authored-by: Jungtaek Lim (HeartSaVioR) <[email protected]>
Signed-off-by: HyukjinKwon <[email protected]>
…itHub Action

### What changes were proposed in this pull request?

This PR aims to add linters and license/dependency checkers to GitHub Action. This excludes `lint-r` intentionally because https://github.com/actions/setup-r is not ready. We can add that later when it becomes available.

### Why are the changes needed?

This will help the PR reviews.

### Does this PR introduce any user-facing change?

No.

### How was this patch tested?

See the GitHub Action result on this PR.

Closes #25879 from dongjoon-hyun/SPARK-29199.

Authored-by: Dongjoon Hyun <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
### What changes were proposed in this pull request?

Support for dot product with:
- `ml.linalg.Vector`
- `ml.linalg.Vectors`
- `mllib.linalg.Vector`
- `mllib.linalg.Vectors`

### Why are the changes needed?

Dot product is useful for feature engineering and scoring.  BLAS routines are already there, just a wrapper is needed.

### Does this PR introduce any user-facing change?

No user facing changes, just some new functionality.

### How was this patch tested?

Tests were written and added to the appropriate `VectorSuites` classes.  They can be quickly run with:

```
sbt "mllib-local/testOnly org.apache.spark.ml.linalg.VectorsSuite"
sbt "mllib/testOnly org.apache.spark.mllib.linalg.VectorsSuite"
```

Closes #25818 from phpisciuneri/SPARK-29121.

Authored-by: Patrick Pisciuneri <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
…s `field`

### What changes were proposed in this pull request?

Changed the `DateTimeUtils.getMilliseconds()` by avoiding the decimal division, and replacing it by setting scale and precision while converting microseconds to the decimal type.

### Why are the changes needed?
This improves performance of `extract` and `date_part()` by more than **50 times**:
Before:
```
Invoke extract for timestamp:             Best Time(ms)   Avg Time(ms)   Stdev(ms)    Rate(M/s)   Per Row(ns)   Relative	Invoke extract for timestamp:             Best Time(ms)   Avg Time(ms)   Stdev(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------------------------------
cast to timestamp                                   397            428          45         25.2          39.7       1.0X
MILLISECONDS of timestamp                         36723          36761          63          0.3        3672.3       0.0X
```
After:
```
Invoke extract for timestamp:             Best Time(ms)   Avg Time(ms)   Stdev(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------------------------------
cast to timestamp                                   278            284           6         36.0          27.8       1.0X
MILLISECONDS of timestamp                           592            606          13         16.9          59.2       0.5X
```

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
By existing test suite - `DateExpressionsSuite`

Closes #25871 from MaxGekk/optimize-epoch-millis.

Lead-authored-by: Maxim Gekk <[email protected]>
Co-authored-by: Dongjoon Hyun <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
### What changes were proposed in this pull request?

Refactoring of the `DateTimeUtils.getEpoch()` function by avoiding decimal operations that are pretty expensive, and converting the final result to the decimal type at the end.

### Why are the changes needed?
The changes improve performance of the `getEpoch()` method at least up to **20 times**.
Before:
```
Invoke extract for timestamp:             Best Time(ms)   Avg Time(ms)   Stdev(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------------------------------
cast to timestamp                                   256            277          33         39.0          25.6       1.0X
EPOCH of timestamp                                23455          23550         131          0.4        2345.5       0.0X
```
After:
```
Invoke extract for timestamp:             Best Time(ms)   Avg Time(ms)   Stdev(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------------------------------
cast to timestamp                                   255            294          34         39.2          25.5       1.0X
EPOCH of timestamp                                 1049           1054           9          9.5         104.9       0.2X
```

### Does this PR introduce any user-facing change?
No

### How was this patch tested?

By existing test from `DateExpressionSuite`.

Closes #25881 from MaxGekk/optimize-extract-epoch.

Authored-by: Maxim Gekk <[email protected]>
Signed-off-by: HyukjinKwon <[email protected]>
### What changes were proposed in this pull request?

Correct a word in a log message.

### Why are the changes needed?

Log message will be more clearly.

### Does this PR introduce any user-facing change?

No.

### How was this patch tested?

Test is not needed.

Closes #25880 from mdianjun/fix-a-word.

Authored-by: madianjun <[email protected]>
Signed-off-by: HyukjinKwon <[email protected]>
### What changes were proposed in this pull request?

Supported special string values for `DATE` type. They are simply notational shorthands that will be converted to ordinary date values when read. The following string values are supported:
- `epoch [zoneId]` - `1970-01-01`
- `today [zoneId]` - the current date in the time zone specified by `spark.sql.session.timeZone`.
- `yesterday [zoneId]` - the current date -1
- `tomorrow [zoneId]` - the current date + 1
- `now` - the date of running the current query. It has the same notion as `today`.

For example:
```sql
spark-sql> SELECT date 'tomorrow' - date 'yesterday';
2
```

### Why are the changes needed?

To maintain feature parity with PostgreSQL, see [8.5.1.4. Special Values](https://www.postgresql.org/docs/12/datatype-datetime.html)

### Does this PR introduce any user-facing change?

Previously, the parser fails on the special values with the error:
```sql
spark-sql> select date 'today';
Error in query:
Cannot parse the DATE value: today(line 1, pos 7)
```
After the changes, the special values are converted to appropriate dates:
```sql
spark-sql> select date 'today';
2019-09-06
```

### How was this patch tested?
- Added tests to `DateFormatterSuite` to check parsing special values from regular strings.
- Tests in `DateTimeUtilsSuite` check parsing those values from `UTF8String`
- Uncommented tests in `date.sql`

Closes #25708 from MaxGekk/datetime-special-values.

Authored-by: Maxim Gekk <[email protected]>
Signed-off-by: HyukjinKwon <[email protected]>
### What changes were proposed in this pull request?
This is a followup for #24981
Seems we mistakenly didn't added `test_pandas_udf_cogrouped_map` into `modules.py`. So we don't have official test results against that PR.

```
...
Starting test(python3.6): pyspark.sql.tests.test_pandas_udf
...
Starting test(python3.6): pyspark.sql.tests.test_pandas_udf_grouped_agg
...
Starting test(python3.6): pyspark.sql.tests.test_pandas_udf_grouped_map
...
Starting test(python3.6): pyspark.sql.tests.test_pandas_udf_scalar
...
Starting test(python3.6): pyspark.sql.tests.test_pandas_udf_window
Finished test(python3.6): pyspark.sql.tests.test_pandas_udf (21s)
...
Finished test(python3.6): pyspark.sql.tests.test_pandas_udf_grouped_map (49s)
...
Finished test(python3.6): pyspark.sql.tests.test_pandas_udf_window (58s)
...
Finished test(python3.6): pyspark.sql.tests.test_pandas_udf_scalar (82s)
...
Finished test(python3.6): pyspark.sql.tests.test_pandas_udf_grouped_agg (105s)
...
```

If tests fail, we should revert that PR.

### Why are the changes needed?

Relevant tests should be ran.

### Does this PR introduce any user-facing change?

No.

### How was this patch tested?

Jenkins tests.

Closes #25890 from HyukjinKwon/SPARK-28840.

Authored-by: HyukjinKwon <[email protected]>
Signed-off-by: HyukjinKwon <[email protected]>
### What changes were proposed in this pull request?
Rewrite
```
NOT isnull(x)     -> isnotnull(x)
NOT isnotnull(x)  -> isnull(x)
```

### Why are the changes needed?
Make LogicalPlan more readable and  useful for query canonicalization. Make same condition equal when judge query canonicalization equal

### Does this PR introduce any user-facing change?

NO

### How was this patch tested?

Newly added UTs.

Closes #25878 from AngersZhuuuu/SPARK-29162.

Authored-by: angerszhu <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
### What changes were proposed in this pull request?

This PR aims to add tag `ExtendedSQLTest` for `SQLQueryTestSuite`.
This doesn't affect our Jenkins test coverage.
Instead, this tag gives us an ability to parallelize them by splitting this test suite and the other suites.

### Why are the changes needed?

`SQLQueryTestSuite` takes 45 mins alone because it has many SQL scripts to run.

<img width="906" alt="time" src="https://user-images.githubusercontent.com/9700541/65353553-4af0f100-dba2-11e9-9f2f-386742d28f92.png">

### Does this PR introduce any user-facing change?

No.

### How was this patch tested?

```
build/sbt "sql/test-only *.SQLQueryTestSuite" -Dtest.exclude.tags=org.apache.spark.tags.ExtendedSQLTest
...
[info] SQLQueryTestSuite:
[info] ScalaTest
[info] Run completed in 3 seconds, 147 milliseconds.
[info] Total number of tests run: 0
[info] Suites: completed 1, aborted 0
[info] Tests: succeeded 0, failed 0, canceled 0, ignored 0, pending 0
[info] No tests were executed.
[info] Passed: Total 0, Failed 0, Errors 0, Passed 0
[success] Total time: 22 s, completed Sep 20, 2019 12:23:13 PM
```

Closes #25872 from dongjoon-hyun/SPARK-29191.

Authored-by: Dongjoon Hyun <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
… for ThriftServerSessionPage

### What changes were proposed in this pull request?

This PR add support sorting `Execution Time` and `Duration` columns for `ThriftServerSessionPage`.

### Why are the changes needed?

Previously, it's not sorted correctly.

### Does this PR introduce any user-facing change?

Yes.

### How was this patch tested?

Manually do the following and test sorting on those columns in the Spark Thrift Server Session Page.
```
$ sbin/start-thriftserver.sh
$ bin/beeline -u jdbc:hive2://localhost:10000
0: jdbc:hive2://localhost:10000> create table t(a int);
+---------+--+
| Result  |
+---------+--+
+---------+--+
No rows selected (0.521 seconds)
0: jdbc:hive2://localhost:10000> select * from t;
+----+--+
| a  |
+----+--+
+----+--+
No rows selected (0.772 seconds)
0: jdbc:hive2://localhost:10000> show databases;
+---------------+--+
| databaseName  |
+---------------+--+
| default       |
+---------------+--+
1 row selected (0.249 seconds)
```

**Sorted by `Execution Time` column**:
![image](https://user-images.githubusercontent.com/5399861/65387476-53038900-dd7a-11e9-885c-fca80287f550.png)

**Sorted by `Duration` column**:
![image](https://user-images.githubusercontent.com/5399861/65387481-6e6e9400-dd7a-11e9-9318-f917247efaa8.png)

Closes #25892 from wangyum/SPARK-28599.

Authored-by: Yuming Wang <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
…yTest

### What changes were proposed in this pull request?

This pr proposes to check method bytecode size in `BenchmarkQueryTest`. This metric is critical for performance numbers.

### Why are the changes needed?

For performance checks

### Does this PR introduce any user-facing change?

No

### How was this patch tested?

N/A

Closes #25788 from maropu/CheckMethodSize.

Authored-by: Takeshi Yamamuro <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
…enerate the shuffle files

After the newly added shuffle block fetching protocol in #24565, we can keep this work by extending the FetchShuffleBlocks message.

### What changes were proposed in this pull request?
In this patch, we achieve the indeterminate shuffle rerun by reusing the task attempt id(unique id within an application) in shuffle id, so that each shuffle write attempt has a different file name. For the indeterministic stage, when the stage resubmits, we'll clear all existing map status and rerun all partitions.

All changes are summarized as follows:
- Change the mapId to mapTaskAttemptId in shuffle related id.
- Record the mapTaskAttemptId in MapStatus.
- Still keep mapId in ShuffleFetcherIterator for fetch failed scenario.
- Add the determinate flag in Stage and use it in DAGScheduler and the cleaning work for the intermediate stage.

### Why are the changes needed?
This is a follow-up work for #22112's future improvment[1]: `Currently we can't rollback and rerun a shuffle map stage, and just fail.`

Spark will rerun a finished shuffle write stage while meeting fetch failures, currently, the rerun shuffle map stage will only resubmit the task for missing partitions and reuse the output of other partitions. This logic is fine in most scenarios, but for indeterministic operations(like repartition), multiple shuffle write attempts may write different data, only rerun the missing partition will lead a correctness bug. So for the shuffle map stage of indeterministic operations, we need to support rolling back the shuffle map stage and re-generate the shuffle files.

### Does this PR introduce any user-facing change?
Yes, after this PR, the indeterminate stage rerun will be accepted by rerunning the whole stage. The original behavior is aborting the stage and fail the job.

### How was this patch tested?
- UT: Add UT for all changing code and newly added function.
- Manual Test: Also providing a manual test to verify the effect.
```
import scala.sys.process._
import org.apache.spark.TaskContext

val determinateStage0 = sc.parallelize(0 until 1000 * 1000 * 100, 10)
val indeterminateStage1 = determinateStage0.repartition(200)
val indeterminateStage2 = indeterminateStage1.repartition(200)
val indeterminateStage3 = indeterminateStage2.repartition(100)
val indeterminateStage4 = indeterminateStage3.repartition(300)
val fetchFailIndeterminateStage4 = indeterminateStage4.map { x =>
if (TaskContext.get.attemptNumber == 0 && TaskContext.get.partitionId == 190 &&
  TaskContext.get.stageAttemptNumber == 0) {
  throw new Exception("pkill -f -n java".!!)
  }
  x
}
val indeterminateStage5 = fetchFailIndeterminateStage4.repartition(200)
val finalStage6 = indeterminateStage5.repartition(100).collect().distinct.length
```
It's a simple job with multi indeterminate stage, it will get a wrong answer while using old Spark version like 2.2/2.3, and will be killed after #22112. With this fix, the job can retry all indeterminate stage as below screenshot and get the right result.
![image](https://user-images.githubusercontent.com/4833765/63948434-3477de00-caab-11e9-9ed1-75abfe6d16bd.png)

Closes #25620 from xuanyuanking/SPARK-25341-8.27.

Authored-by: Yuanjian Li <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
…ding logical plan

### What changes were proposed in this pull request?

This PR supports UPDATE in the parser and add the corresponding logical plan. The SQL syntax is a standard UPDATE statement:
```
UPDATE tableName tableAlias SET colName=value [, colName=value]+ WHERE predicate?
```

### Why are the changes needed?

With this change, we can start to implement UPDATE in builtin sources and think about how to design the update API in DS v2.

### Does this PR introduce any user-facing change?

No.

### How was this patch tested?

New test cases added.

Closes #25626 from xianyinxin/SPARK-28892.

Authored-by: xy_xin <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
### What changes were proposed in this pull request?
Do task handling even the task exceeds maxResultSize configured. More details are in the jira description https://issues.apache.org/jira/browse/SPARK-29177 .

### Why are the changes needed?
Without this patch, the zombie tasks will prevent yarn from recycle those containers running these tasks, which will affect other applications.

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
unit test and production test with a very large `SELECT` in spark thriftserver.

Closes #25850 from adrian-wang/zombie.

Authored-by: Daoyuan Wang <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
…d interrupted

### What changes were proposed in this pull request?
Discuss in #25611

If cancel() and close() is called very quickly after the query is started, then they may both call cleanup() before Spark Jobs are started. Then sqlContext.sparkContext.cancelJobGroup(statementId) does nothing.
But then the execute thread can start the jobs, and only then get interrupted and exit through here. But then it will exit here, and no-one will cancel these jobs and they will keep running even though this execution has exited.

So  when execute() was interrupted by `cancel()`, when get into catch block, we should call canJobGroup again to make sure the job was canceled.

### Why are the changes needed?

### Does this PR introduce any user-facing change?
NO

### How was this patch tested?
MT

Closes #25743 from AngersZhuuuu/SPARK-29036.

Authored-by: angerszhu <[email protected]>
Signed-off-by: Yuming Wang <[email protected]>
### What changes were proposed in this pull request?
This PR reduce shuffle partitions from 200 to 4 in `SQLQueryTestSuite` to reduce testing time.

### Why are the changes needed?
Reduce testing time.

### Does this PR introduce any user-facing change?
No.

### How was this patch tested?
Manually tested in my local:
Before:
```
...
[info] - subquery/in-subquery/in-joins.sql (6 minutes, 19 seconds)
[info] - subquery/in-subquery/not-in-joins.sql (2 minutes, 17 seconds)
[info] - subquery/scalar-subquery/scalar-subquery-predicate.sql (45 seconds, 763 milliseconds)
...
Run completed in 1 hour, 22 minutes.
```
After:
```
...
[info] - subquery/in-subquery/in-joins.sql (1 minute, 12 seconds)
[info] - subquery/in-subquery/not-in-joins.sql (27 seconds, 541 milliseconds)
[info] - subquery/scalar-subquery/scalar-subquery-predicate.sql (17 seconds, 360 milliseconds)
...
Run completed in 47 minutes.
```

Closes #25891 from wangyum/SPARK-29203.

Authored-by: Yuming Wang <[email protected]>
Signed-off-by: Yuming Wang <[email protected]>
dilipbiswal and others added 27 commits October 18, 2019 15:53
…Exec in EXPLAIN FORMATTED

# What changes were proposed in this pull request?
Currently we report only output attributes of a scan while doing EXPLAIN FORMATTED.
This PR implements the ```verboseStringWithOperatorId``` in DataSourceScanExec to report additional information about a scan such as pushed down filters, partition filters, location etc.

**SQL**
```
EXPLAIN FORMATTED
  SELECT key, max(val)
  FROM   explain_temp1
  WHERE  key > 0
  GROUP  BY key
  ORDER  BY key
```
**Before**
```
== Physical Plan ==
* Sort (9)
+- Exchange (8)
   +- * HashAggregate (7)
      +- Exchange (6)
         +- * HashAggregate (5)
            +- * Project (4)
               +- * Filter (3)
                  +- * ColumnarToRow (2)
                     +- Scan parquet default.explain_temp1 (1)

(1) Scan parquet default.explain_temp1
Output: [key#x, val#x]

....
....
....
```
**After**
```

== Physical Plan ==
* Sort (9)
+- Exchange (8)
   +- * HashAggregate (7)
      +- Exchange (6)
         +- * HashAggregate (5)
            +- * Project (4)
               +- * Filter (3)
                  +- * ColumnarToRow (2)
                     +- Scan parquet default.explain_temp1 (1)

(1) Scan parquet default.explain_temp1
Output: [key#x, val#x]
Batched: true
DataFilters: [isnotnull(key#x), (key#x > 0)]
Format: Parquet
Location: InMemoryFileIndex[file:/tmp/apache/spark/spark-warehouse/explain_temp1]
PushedFilters: [IsNotNull(key), GreaterThan(key,0)]
ReadSchema: struct<key:int,val:int>

...
...
...
```

### Why are the changes needed?

### Does this PR introduce any user-facing change?

### How was this patch tested?

Closes #26042 from dilipbiswal/verbose_string_datasrc_scanexec.

Authored-by: Dilip Biswal <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
…elds with null values

### Why are the changes needed?
As mentioned in jira, sometimes we need to be able to support the retention of null columns when writing JSON.
For example, sparkmagic(used widely in jupyter with livy) will generate sql query results based on DataSet.toJSON and parse JSON to pandas DataFrame to display. If there is a null column, it is easy to have some column missing or even the query result is empty. The loss of the null column in the first row, may cause parsing exceptions or loss of entire column data.

### Does this PR introduce any user-facing change?
Example in spark-shell.
scala> spark.sql("select null as a, 1 as b").toJSON.collect.foreach(println)
{"b":1}

scala> spark.sql("set spark.sql.jsonGenerator.struct.ignore.null=false")
res2: org.apache.spark.sql.DataFrame = [key: string, value: string]

scala> spark.sql("select null as a, 1 as b").toJSON.collect.foreach(println)
{"a":null,"b":1}

### How was this patch tested?
Add new test to JacksonGeneratorSuite

Closes #26098 from stczwd/json.

Lead-authored-by: stczwd <[email protected]>
Co-authored-by: Jackey Lee <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
…a table's ownership

### What changes were proposed in this pull request?

In this change, we give preference to the original table's owner if it is not empty.

### Why are the changes needed?

When executing 'insert into/overwrite ...' DML, or 'alter table set tblproperties ...'  DDL, spark would change the ownership of the table the one who runs the spark application.

### Does this PR introduce any user-facing change?

NO

### How was this patch tested?

Compare with the behavior of Apache Hive

Closes #26068 from yaooqinn/SPARK-29405.

Authored-by: Kent Yao <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
…should delete old data

### What changes were proposed in this pull request?

This patch proposes to delete old Hive external partition directory even the partition does not exist in Hive, when insert overwrite Hive external table partition.

### Why are the changes needed?

When insert overwrite to a Hive external table partition, if the partition does not exist, Hive will not check if the external partition directory exists or not before copying files. So if users drop the partition, and then do insert overwrite to the same partition, the partition will have both old and new data.

For example:
```scala
withSQLConf(HiveUtils.CONVERT_METASTORE_PARQUET.key -> "false") {
  // test is an external Hive table.
  sql("INSERT OVERWRITE TABLE test PARTITION(name='n1') SELECT 1")
  sql("ALTER TABLE test DROP PARTITION(name='n1')")
  sql("INSERT OVERWRITE TABLE test PARTITION(name='n1') SELECT 2")
  sql("SELECT id FROM test WHERE name = 'n1' ORDER BY id") // Got both 1 and 2.
}
```

### Does this PR introduce any user-facing change?

Yes. This fix a correctness issue when users drop partition on a Hive external table partition and then insert overwrite it.

### How was this patch tested?

Added test.

Closes #25979 from viirya/SPARK-29295.

Lead-authored-by: Liang-Chi Hsieh <[email protected]>
Co-authored-by: Liang-Chi Hsieh <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
…for classification & regression

### What changes were proposed in this pull request?
Add private _XXXParams classes for classification & regression

### Why are the changes needed?
To keep parity between scala and python

### Does this PR introduce any user-facing change?
Yes. Add gettters/setters for the following Model classes

```
LinearSVCModel:
get/setRegParam
get/setMaxIte
get/setFitIntercept
get/setTol
get/setStandardization
get/setWeightCol
get/setAggregationDepth
get/setThreshold

LogisticRegressionModel:
get/setRegParam
get/setElasticNetParam
get/setMaxIter
get/setFitIntercept
get/setTol
get/setStandardization
get/setWeightCol
get/setAggregationDepth
get/setThreshold

NaiveBayesModel:
get/setWeightCol

LinearRegressionModel:
get/setRegParam
get/setElasticNetParam
get/setMaxIter
get/setTol
get/setFitIntercept
get/setStandardization
get/setWeight
get/setSolver
get/setAggregationDepth
get/setLoss

GeneralizedLinearRegressionModel:
get/setFitIntercept
get/setMaxIter
get/setTol
get/setRegParam
get/setWeightCol
get/setSolver
```

### How was this patch tested?
Add a few doctest

Closes #26142 from huaxingao/spark-29381.

Authored-by: Huaxin Gao <[email protected]>
Signed-off-by: zhengruifeng <[email protected]>
### What changes were proposed in this pull request?
`ml.MulticlassClassificationEvaluator` & `mllib.MulticlassMetrics` support log-loss

### Why are the changes needed?
log-loss is an important classification metric and is widely used in practice

### Does this PR introduce any user-facing change?
Yes, add new option ("logloss") and a related param `eps`

### How was this patch tested?
added testsuites & local tests refering to sklearn

Closes #26135 from zhengruifeng/logloss.

Authored-by: zhengruifeng <[email protected]>
Signed-off-by: zhengruifeng <[email protected]>
… commands

### What changes were proposed in this pull request?

Add `AnalyzeTableStatement` and `AnalyzeColumnStatement`, and make ANALYZE TABLE go through the same catalog/table resolution framework of v2 commands.

### Why are the changes needed?

It's important to make all the commands have the same table resolution behavior, to avoid confusing end-users. e.g.
```
USE my_catalog
DESC t // success and describe the table t from my_catalog
ANALYZE TABLE t // report table not found as there is no table t in the session catalog
```

### Does this PR introduce any user-facing change?

yes. When running ANALYZE TABLE, Spark fails the command if the current catalog is set to a v2 catalog, or the table name specified a v2 catalog.

### How was this patch tested?

new tests

Closes #26129 from cloud-fan/analyze-table.

Authored-by: Wenchen Fan <[email protected]>
Signed-off-by: Gengliang Wang <[email protected]>
### What changes were proposed in this pull request?
The handling of the catalog across plans should be as follows ([SPARK-29014](https://issues.apache.org/jira/browse/SPARK-29014)):
* The *current* catalog should be used when no catalog is specified
* The default catalog is the catalog *current* is initialized to
* If the *default* catalog is not set, then *current* catalog is the built-in Spark session catalog.

This PR addresses the issue where *current* catalog usage is not followed as describe above.

### Why are the changes needed?

It is a bug as described in the previous section.

### Does this PR introduce any user-facing change?
No.

### How was this patch tested?

Unit tests added.

Closes #26120 from imback82/cleanup_catalog.

Authored-by: Terry Kim <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
### What changes were proposed in this pull request?
A followup of [#25295](#25295).
1) change the logWarning to logDebug in `OptimizeLocalShuffleReader`.
2) update the test to check whether query stage reuse can work well with local shuffle reader.

### Why are the changes needed?
make code robust

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
existing tests

Closes #26157 from JkSelf/followup-25295.

Authored-by: jiake <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
### What changes were proposed in this pull request?
The `date_part()` function can accept the `source` parameter of the `INTERVAL` type (`CalendarIntervalType`). The following values of the `field` parameter are supported:
- `"MILLENNIUM"` (`"MILLENNIA"`, `"MIL"`, `"MILS"`) - number of millenniums in the given interval. It is `YEAR / 1000`.
- `"CENTURY"` (`"CENTURIES"`, `"C"`, `"CENT"`) - number of centuries in the interval calculated as `YEAR / 100`.
- `"DECADE"` (`"DECADES"`, `"DEC"`, `"DECS"`) - decades in the `YEAR` part of the interval calculated as `YEAR / 10`.
- `"YEAR"` (`"Y"`, `"YEARS"`, `"YR"`, `"YRS"`) - years in a values of `CalendarIntervalType`. It is `MONTHS / 12`.
- `"QUARTER"` (`"QTR"`) - a quarter of year calculated as `MONTHS / 3 + 1`
- `"MONTH"` (`"MON"`, `"MONS"`, `"MONTHS"`) - the months part of the interval calculated as `CalendarInterval.months % 12`
- `"DAY"` (`"D"`, `"DAYS"`) - total number of days in `CalendarInterval.microseconds`
- `"HOUR"` (`"H"`, `"HOURS"`, `"HR"`, `"HRS"`) - the hour part of the interval.
- `"MINUTE"` (`"M"`, `"MIN"`, `"MINS"`, `"MINUTES"`) - the minute part of the interval.
- `"SECOND"` (`"S"`, `"SEC"`, `"SECONDS"`, `"SECS"`) - the seconds part with fractional microsecond part.
- `"MILLISECONDS"` (`"MSEC"`, `"MSECS"`, `"MILLISECON"`, `"MSECONDS"`, `"MS"`) - the millisecond part of the interval with fractional microsecond part.
- `"MICROSECONDS"` (`"USEC"`, `"USECS"`, `"USECONDS"`, `"MICROSECON"`, `"US"`) - the total number of microseconds in the `second`, `millisecond` and `microsecond` parts of the given interval.
- `"EPOCH"` - the total number of seconds in the interval including the fractional part with microsecond precision. Here we assume 365.25 days per year (leap year every four years).

For example:
```sql
> SELECT date_part('days', interval 1 year 10 months 5 days);
 5
> SELECT date_part('seconds', interval 30 seconds 1 milliseconds 1 microseconds);
 30.001001
```

### Why are the changes needed?
To maintain feature parity with PostgreSQL (https://www.postgresql.org/docs/11/functions-datetime.html#FUNCTIONS-DATETIME-EXTRACT)

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
- Added new test suite `IntervalExpressionsSuite`
- Add new test cases to `date_part.sql`

Closes #25981 from MaxGekk/extract-from-intervals.

Authored-by: Maxim Gekk <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
…de.md

### What changes were proposed in this pull request?
This PR fixes the incorrect `EqualNullSafe` symbol in `sql-migration-guide.md`.

### Why are the changes needed?
Fix documentation error.

### Does this PR introduce any user-facing change?
No.

### How was this patch tested?
N/A

Closes #26163 from wangyum/EqualNullSafe-symbol.

Authored-by: Yuming Wang <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
### What changes were proposed in this pull request?
Current Spark SQL `SHOW FUNCTIONS` don't show `!=`, `<>`, `between`, `case`
But these expressions is truly functions. We should show it in SQL `SHOW FUNCTIONS`

### Why are the changes needed?

SHOW FUNCTIONS show '!=', '<>' , 'between', 'case'

### Does this PR introduce any user-facing change?
SHOW FUNCTIONS show '!=', '<>' , 'between', 'case'

### How was this patch tested?
UT

Closes #26053 from AngersZhuuuu/SPARK-29379.

Authored-by: angerszhu <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
<!--
Thanks for sending a pull request!  Here are some tips for you:
  1. If this is your first time, please read our contributor guidelines: https://spark.apache.org/contributing.html
  2. Ensure you have added or run the appropriate tests for your PR: https://spark.apache.org/developer-tools.html
  3. If the PR is unfinished, add '[WIP]' in your PR title, e.g., '[WIP][SPARK-XXXX] Your PR title ...'.
  4. Be sure to keep the PR description updated to reflect all changes.
  5. Please write your PR title to summarize what this PR proposes.
  6. If possible, provide a concise example to reproduce the issue for a faster review.
-->

### What changes were proposed in this pull request?
Add benchmark code for MapStatuses serialization & deserialization performance.

### Why are the changes needed?
For comparing the performance differences against optimization.

### Does this PR introduce any user-facing change?
<!--
If yes, please clarify the previous behavior and the change this PR proposes - provide the console output, description and/or an example to show the behavior difference if possible.
If no, write 'No'.
-->
No

### How was this patch tested?
<!--
If tests were added, say they were added here. Please make sure to add some test cases that check the changes thoroughly including negative and positive cases if possible.
If it was tested in a way different from regular unit tests, please clarify how you tested step by step, ideally copy and paste-able, so that other reviewers can test and check, and descendants can verify in the future.
If tests were not added, please describe why they were not added and/or why it was difficult to add.
-->
No test is required.

Closes #26169 from dbtsai/benchmark.

Lead-authored-by: DB Tsai <[email protected]>
Co-authored-by: Dongjoon Hyun <[email protected]>
Co-authored-by: DB Tsai <[email protected]>
Signed-off-by: DB Tsai <[email protected]>
… string to timestamp

### What changes were proposed in this pull request?
* Adding an additional check in `stringToTimestamp` to handle cases where the input has trailing ':'
* Added a test to make sure this works.

### Why are the changes needed?
In a couple of scenarios while converting from String to Timestamp `DateTimeUtils.stringToTimestamp` throws an array out of bounds exception if there is trailing  ':'. The behavior of this method requires it to return `None` in case the format of the string is incorrect.

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
Added a test in the `DateTimeTestUtils` suite to test if my fix works.

Closes #26143 from rahulsmahadev/SPARK-29494.

Lead-authored-by: Rahul Mahadev <[email protected]>
Co-authored-by: Rahul Shivu Mahadev <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
…e master web UI

### What changes were proposed in this pull request?

This PR aims to add a new column `Duration` for running drivers in Apache Spark `Standalone` master web UI in order to improve UX. This help users like the other `Duration` columns in the `Running` and `Completed` application tables.

### Why are the changes needed?

When we use `--supervise`, the drivers can survive longer.
Technically, the `Duration` column is not the same. (Please see the image below.)

### Does this PR introduce any user-facing change?

Yes. The red box is added newly.

<img width="1312" alt="Screen Shot 2019-10-14 at 12 53 43 PM" src="https://user-images.githubusercontent.com/9700541/66779127-50301b80-ee82-11e9-853f-72222cd011ac.png">

### How was this patch tested?

Manual since this is a UI column. After starting standalone cluster and jobs, kill the `DriverWrapper` and see the UI.

```
$ sbin/start-master.sh
$ sbin/start-slave.sh spark://$(hostname):7077
$ bin/spark-submit --master spark://(hostname):7077 --deploy-mode cluster --supervise --class org.apache.spark.examples.JavaSparkPi examples/target/scala-2.12/jars/spark-examples_2.12-3.0.0-SNAPSHOT.jar 1000
$ jps
41521 DriverWrapper
...
$ kill -9 41521   // kill the `DriverWrapper`.
```

Closes #26113 from dongjoon-hyun/SPARK-29466.

Authored-by: Dongjoon Hyun <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
…format

### What changes were proposed in this pull request?

This is a followup of #25241 .

The typed interval expression should fail for invalid format.

### Why are the changes needed?

Te be consistent with the typed timestamp/date expression

### Does this PR introduce any user-facing change?

Yes. But this feature is not released yet.

### How was this patch tested?

updated test

Closes #26151 from cloud-fan/bug.

Authored-by: Wenchen Fan <[email protected]>
Signed-off-by: Yuming Wang <[email protected]>
…commands

### What changes were proposed in this pull request?

Add RepairTableStatement and make REPAIR TABLE go through the same catalog/table resolution framework of v2 commands.

### Why are the changes needed?

It's important to make all the commands have the same table resolution behavior, to avoid confusing end-users. e.g.

```
USE my_catalog
DESC t // success and describe the table t from my_catalog
MSCK REPAIR TABLE t // report table not found as there is no table t in the session catalog
```
### Does this PR introduce any user-facing change?

yes. When running MSCK REPAIR TABLE, Spark fails the command if the current catalog is set to a v2 catalog, or the table name specified a v2 catalog.

### How was this patch tested?

New unit tests

Closes #26168 from imback82/repair_table.

Authored-by: Terry Kim <[email protected]>
Signed-off-by: Liang-Chi Hsieh <[email protected]>
…alidatorModel

### What changes were proposed in this pull request?
 Currently pyspark doesn't write/read `avgMetrics` in `CrossValidatorModel`, whereas scala supports it.

### Why are the changes needed?
 Test step to reproduce it:

```
dataset = spark.createDataFrame([(Vectors.dense([0.0]), 0.0),
     (Vectors.dense([0.4]), 1.0),
     (Vectors.dense([0.5]), 0.0),
      (Vectors.dense([0.6]), 1.0),
      (Vectors.dense([1.0]), 1.0)] * 10,
     ["features", "label"])
lr = LogisticRegression()
grid = ParamGridBuilder().addGrid(lr.maxIter, [0, 1]).build()
evaluator = BinaryClassificationEvaluator()
cv = CrossValidator(estimator=lr, estimatorParamMaps=grid, evaluator=evaluator,parallelism=2)
cvModel = cv.fit(dataset)
cvModel.write().save("/tmp/model")
cvModel2 = CrossValidatorModel.read().load("/tmp/model")
print(cvModel.avgMetrics) # prints non empty result as expected
print(cvModel2.avgMetrics) # Bug: prints an empty result.
```

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
Manually tested

Before patch:
```
>>> cvModel.write().save("/tmp/model_0")
>>> cvModel2 = CrossValidatorModel.read().load("/tmp/model_0")
>>> print(cvModel2.avgMetrics)
[]
```

After patch:
```
>>> cvModel2 = CrossValidatorModel.read().load("/tmp/model_2")
>>> print(cvModel2.avgMetrics[0])
0.5
```

Closes #26038 from shahidki31/avgMetrics.

Authored-by: shahid <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
…n SQLQueryTestSuite

### What changes were proposed in this pull request?

This PR fix Fix the associated location already exists in `SQLQueryTestSuite`:
```
build/sbt "~sql/test-only *SQLQueryTestSuite -- -z postgreSQL/join.sql"
...
[info] - postgreSQL/join.sql *** FAILED *** (35 seconds, 420 milliseconds)
[info]   postgreSQL/join.sql
[info]   Expected "[]", but got "[org.apache.spark.sql.AnalysisException
[info]   Can not create the managed table('`default`.`tt3`'). The associated location('file:/root/spark/sql/core/spark-warehouse/org.apache.spark.sql.SQLQueryTestSuite/tt3') already exists.;]" Result did not match for query #108
```

### Why are the changes needed?
Fix bug.

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
N/A

Closes #26181 from wangyum/TestError.

Authored-by: Yuming Wang <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
### What changes were proposed in this pull request?
Instead of using GZIP for compressing the serialized `MapStatuses`, ZStd provides better compression rate and faster compression time.

The original approach is serializing and writing data directly into `GZIPOutputStream` as one step; however, the compression time is faster if a bigger chuck of the data is processed by the codec at once. As a result, in this PR, the serialized data is written into an uncompressed byte array first, and then the data is compressed. For smaller `MapStatues`, we find it's 2x faster.

Here is the benchmark result.

#### 20k map outputs, and each has 500 blocks
1. ZStd two steps in this PR: 0.402 ops/ms, 89,066 bytes
2. ZStd one step as the original approach: 0.370 ops/ms, 89,069 bytes
3. GZip: 0.092 ops/ms, 217,345 bytes

#### 20k map outputs, and each has 5 blocks
1. ZStd two steps in this PR: 0.9 ops/ms, 75,449 bytes
2. ZStd one step as the original approach: 0.38 ops/ms, 75,452 bytes
3. GZip: 0.21 ops/ms, 160,094 bytes

### Why are the changes needed?
Decrease the time for serializing the `MapStatuses` in large scale job.

### Does this PR introduce any user-facing change?
No.

### How was this patch tested?
Existing tests.

Closes #26085 from dbtsai/mapStatus.

Lead-authored-by: DB Tsai <[email protected]>
Co-authored-by: Dongjoon Hyun <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
### What changes were proposed in this pull request?

```
bit_and(expression) -- The bitwise AND of all non-null input values, or null if none
bit_or(expression) -- The bitwise OR of all non-null input values, or null if none
```
More details:
https://www.postgresql.org/docs/9.3/functions-aggregate.html

### Why are the changes needed?

Postgres, Mysql and many other popular db support them.

### Does this PR introduce any user-facing change?

add two bit agg

### How was this patch tested?

add ut

Closes #26155 from yaooqinn/SPARK-27879.

Authored-by: Kent Yao <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
…ble's ownership

### What changes were proposed in this pull request?

`CatalogTable` to `HiveTable` will change the table's ownership. How to reproduce:
```scala
import org.apache.spark.sql.catalyst.TableIdentifier
import org.apache.spark.sql.catalyst.catalog.{CatalogStorageFormat, CatalogTable, CatalogTableType}
import org.apache.spark.sql.types.{LongType, StructType}

val identifier = TableIdentifier("spark_29498", None)
val owner = "SPARK-29498"
val newTable = CatalogTable(
  identifier,
  tableType = CatalogTableType.EXTERNAL,
  storage = CatalogStorageFormat(
    locationUri = None,
    inputFormat = None,
    outputFormat = None,
    serde = None,
    compressed = false,
    properties = Map.empty),
  owner = owner,
  schema = new StructType().add("i", LongType, false),
  provider = Some("hive"))

spark.sessionState.catalog.createTable(newTable, false)
// The owner is not SPARK-29498
println(spark.sessionState.catalog.getTableMetadata(identifier).owner)
```

This PR makes it set the `HiveTable`'s owner to `CatalogTable`'s owner if it's owner is not empty when converting `CatalogTable` to `HiveTable`.

### Why are the changes needed?
We should not change the ownership of the table when converting `CatalogTable` to `HiveTable`.

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
unit test

Closes #26160 from wangyum/SPARK-29498.

Authored-by: Yuming Wang <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
…for Scala 2.13.1

### What changes were proposed in this pull request?

This PR upgrades `scala-maven-plugin` to `4.2.4` for Scala `2.13.1`.

### Why are the changes needed?
Scala 2.13.1 seems to break the binary compatibility.

We need to upgrade `scala-maven-plugin` to bring the the following fixes for the latest Scala 2.13.1.
- davidB/scala-maven-plugin#363
- sbt/zinc#698

### Does this PR introduce any user-facing change?

No.

### How was this patch tested?

For now, we don't support Scala-2.13. This PR at least needs to pass the existing Jenkins with Maven to get prepared for Scala-2.13.

Closes #26185 from dongjoon-hyun/SPARK-29528.

Authored-by: Dongjoon Hyun <[email protected]>
Signed-off-by: HyukjinKwon <[email protected]>
…to reuse black list in SQLQueryTestSuite

### What changes were proposed in this pull request?
This pr refine the code in ThriftServerQueryTestSuite.blackList to reuse the black list of SQLQueryTestSuite instead of duplicating all test cases from SQLQueryTestSuite.blackList.

### Why are the changes needed?
To reduce code duplication.

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
N/A

Closes #26188 from fuwhu/SPARK-TBD.

Authored-by: fuwhu <[email protected]>
Signed-off-by: Yuming Wang <[email protected]>
### What changes were proposed in this pull request?
Added new benchmark `IntervalBenchmark` to measure performance of interval related functions. In the PR, I added benchmarks for casting strings to interval. In particular, interval strings with `interval` prefix and without it because there is special code for this https://github.com/apache/spark/blob/da576a737c2db01e5ba5ce19ed0e8f900cb5efaf/common/unsafe/src/main/java/org/apache/spark/unsafe/types/CalendarInterval.java#L100-L103 . And also I added benchmarks for different number of units in interval strings, for example 1 unit is `interval 10 years`, 2 units w/o interval is `10 years 5 months`, and etc.

### Why are the changes needed?
- To find out current performance issues in casting to intervals
- The benchmark can be used while refactoring/re-implementing `CalendarInterval.fromString()` or `CalendarInterval.fromCaseInsensitiveString()`.

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
By running the benchmark via the command:
```shell
SPARK_GENERATE_BENCHMARK_FILES=1 build/sbt "sql/test:runMain org.apache.spark.sql.execution.benchmark.IntervalBenchmark"
```

Closes #26189 from MaxGekk/interval-from-string-benchmark.

Authored-by: Maxim Gekk <[email protected]>
Signed-off-by: HyukjinKwon <[email protected]>
### What changes were proposed in this pull request?
I extended `ExtractBenchmark` to support the `INTERVAL` type of the `source` parameter of the `date_part` function.

### Why are the changes needed?
- To detect performance issues while changing implementation of the `date_part` function in the future.
- To find out current performance bottlenecks in `date_part` for the `INTERVAL` type

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
By running the benchmark and print out produced values per each `field` value.

Closes #26175 from MaxGekk/extract-interval-benchmark.

Authored-by: Maxim Gekk <[email protected]>
Signed-off-by: HyukjinKwon <[email protected]>
### What changes were proposed in this pull request?

This PR ports window.sql from PostgreSQL regression tests https://github.com/postgres/postgres/blob/REL_12_STABLE/src/test/regress/sql/window.sql from lines 320~562

The expected results can be found in the link: https://github.com/postgres/postgres/blob/REL_12_STABLE/src/test/regress/expected/window.out

## How was this patch tested?
Pass the Jenkins.

### Why are the changes needed?
To ensure compatibility with PGSQL

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
Comparison with PgSQL results.

Closes #26121 from DylanGuedes/spark-29108.

Authored-by: DylanGuedes <[email protected]>
Signed-off-by: HyukjinKwon <[email protected]>
@Deegue Deegue merged commit 90233e4 into Deegue:master Oct 22, 2019
Deegue pushed a commit that referenced this pull request Oct 22, 2019
…comparison assertions

## What changes were proposed in this pull request?

This PR removes a few hardware-dependent assertions which can cause a failure in `aarch64`.

**x86_64**
```
rootdonotdel-openlab-allinone-l00242678:/home/ubuntu# uname -a
Linux donotdel-openlab-allinone-l00242678 4.4.0-154-generic apache#181-Ubuntu SMP Tue Jun 25 05:29:03 UTC
2019 x86_64 x86_64 x86_64 GNU/Linux

scala> import java.lang.Float.floatToRawIntBits
import java.lang.Float.floatToRawIntBits
scala> floatToRawIntBits(0.0f/0.0f)
res0: Int = -4194304
scala> floatToRawIntBits(Float.NaN)
res1: Int = 2143289344
```

**aarch64**
```
[rootarm-huangtianhua spark]# uname -a
Linux arm-huangtianhua 4.14.0-49.el7a.aarch64 #1 SMP Tue Apr 10 17:22:26 UTC 2018 aarch64 aarch64 aarch64 GNU/Linux

scala> import java.lang.Float.floatToRawIntBits
import java.lang.Float.floatToRawIntBits
scala> floatToRawIntBits(0.0f/0.0f)
res1: Int = 2143289344
scala> floatToRawIntBits(Float.NaN)
res2: Int = 2143289344
```

## How was this patch tested?

Pass the Jenkins (This removes the test coverage).

Closes apache#25186 from huangtianhua/special-test-case-for-aarch64.

Authored-by: huangtianhua <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
Deegue pushed a commit that referenced this pull request Oct 28, 2019
### What changes were proposed in this pull request?
`org.apache.spark.sql.kafka010.KafkaDelegationTokenSuite` failed lately. After had a look at the logs it just shows the following fact without any details:
```
Caused by: sbt.ForkMain$ForkError: sun.security.krb5.KrbException: Server not found in Kerberos database (7) - Server not found in Kerberos database
```
Since the issue is intermittent and not able to reproduce it we should add more debug information and wait for reproduction with the extended logs.

### Why are the changes needed?
Failing test doesn't give enough debug information.

### Does this PR introduce any user-facing change?
No.

### How was this patch tested?
I've started the test manually and checked that such additional debug messages show up:
```
>>> KrbApReq: APOptions are 00000000 00000000 00000000 00000000
>>> EType: sun.security.krb5.internal.crypto.Aes128CtsHmacSha1EType
Looking for keys for: kafka/localhostEXAMPLE.COM
Added key: 17version: 0
Added key: 23version: 0
Added key: 16version: 0
Found unsupported keytype (3) for kafka/localhostEXAMPLE.COM
>>> EType: sun.security.krb5.internal.crypto.Aes128CtsHmacSha1EType
Using builtin default etypes for permitted_enctypes
default etypes for permitted_enctypes: 17 16 23.
>>> EType: sun.security.krb5.internal.crypto.Aes128CtsHmacSha1EType
MemoryCache: add 1571936500/174770/16C565221B70AAB2BEFE31A83D13A2F4/client/localhostEXAMPLE.COM to client/localhostEXAMPLE.COM|kafka/localhostEXAMPLE.COM
MemoryCache: Existing AuthList:
#3: 1571936493/200803/8CD70D280B0862C5DA1FF901ECAD39FE/client/localhostEXAMPLE.COM
#2: 1571936499/985009/BAD33290D079DD4E3579A8686EC326B7/client/localhostEXAMPLE.COM
#1: 1571936499/995208/B76B9D78A9BE283AC78340157107FD40/client/localhostEXAMPLE.COM
```

Closes apache#26252 from gaborgsomogyi/SPARK-29580.

Authored-by: Gabor Somogyi <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.